Advertisement

Inventiones mathematicae

, Volume 120, Issue 1, pp 161–213 | Cite as

Automorphic forms onO s +2,2(R) and infinite products

  • Richard E. Borcherds
Article

Keywords

Infinite Product 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    R.E. Borcherds: Monstrous moonshine and monstrous Lie superalgebras, Invent. Math.109, 405–444 (1992)Google Scholar
  2. [B-M]
    A. Borel, G. D. Mostow: Algebraic groups and discontinuous subgroups. Proc. Symp. Pure Math. vol.IX, American Mathematical Society 1966Google Scholar
  3. [C-S]
    J.H. Conway, N.J.A. Sloane: Sphere packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290, Springer: New York 1988Google Scholar
  4. [E]
    A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Higher transcendental functions. Vols. 1–3. McGraw-Hill Book Company Inc, New York, Toronto, London 1953Google Scholar
  5. [E-Z]
    M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in mathematics, vol. 55, Birkhäuser: Boston Basel Stuttgart 1985Google Scholar
  6. [F]
    E. Freitag: Siegelsche Modulfunktionen, Die Grundlehren der mathematischen Wissenschaften 254. Springer; Berlin Heidelberg New York 1983Google Scholar
  7. [G]
    V.G. Gritsenko: Jacobi functions ofn variables. J. Soviet. Math. 53 243–252 (1991); (The original Russian is in Zap. Nauch. Seminars of LOMI v.168, 32–45 (1988))Google Scholar
  8. [G-Z]
    B.H. Gross, D.B. Zagier: On singular moduli, reine angewandte. Mathe355, 191–220 (1985)Google Scholar
  9. [K]
    V.G. Kac: Infinite dimensional Lie algebras. third edition, Cambridge University Press, 1990Google Scholar
  10. [Ko]
    W. Kohnen: Modular forms of half integral weight onГ 0. Math. Ann.248 249–266 (1980)Google Scholar
  11. [M]
    H. Maass: Über eine Spezialschar von Modulformen zweiten Grades I, II, III, Inv. Math. 52 (1979) 95–104, Inv. Math 53 (1979) 249–253, and Inv. Math. 53 (1979) 255–265.Google Scholar
  12. [R]
    H. Rademacher: Topics in analytic number theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 169, Springer: Berlin Heidelberg New York 1973Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Richard E. Borcherds
    • 1
  1. 1.Mathematics departmentUniversity of California at BerkeleyUSA

Personalised recommendations