Inventiones mathematicae

, Volume 120, Issue 1, pp 161–213

Automorphic forms onOs+2,2(R) and infinite products

  • Richard E. Borcherds
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    R.E. Borcherds: Monstrous moonshine and monstrous Lie superalgebras, Invent. Math.109, 405–444 (1992)Google Scholar
  2. [B-M]
    A. Borel, G. D. Mostow: Algebraic groups and discontinuous subgroups. Proc. Symp. Pure Math. vol.IX, American Mathematical Society 1966Google Scholar
  3. [C-S]
    J.H. Conway, N.J.A. Sloane: Sphere packings, lattices and groups. Grundlehren der mathematischen Wissenschaften 290, Springer: New York 1988Google Scholar
  4. [E]
    A. Erdelyi, W. Magnus, F. Oberhettinger, F.G. Tricomi: Higher transcendental functions. Vols. 1–3. McGraw-Hill Book Company Inc, New York, Toronto, London 1953Google Scholar
  5. [E-Z]
    M. Eichler, D. Zagier: The theory of Jacobi forms. Progress in mathematics, vol. 55, Birkhäuser: Boston Basel Stuttgart 1985Google Scholar
  6. [F]
    E. Freitag: Siegelsche Modulfunktionen, Die Grundlehren der mathematischen Wissenschaften 254. Springer; Berlin Heidelberg New York 1983Google Scholar
  7. [G]
    V.G. Gritsenko: Jacobi functions ofn variables. J. Soviet. Math. 53 243–252 (1991); (The original Russian is in Zap. Nauch. Seminars of LOMI v.168, 32–45 (1988))Google Scholar
  8. [G-Z]
    B.H. Gross, D.B. Zagier: On singular moduli, reine angewandte. Mathe355, 191–220 (1985)Google Scholar
  9. [K]
    V.G. Kac: Infinite dimensional Lie algebras. third edition, Cambridge University Press, 1990Google Scholar
  10. [Ko]
    W. Kohnen: Modular forms of half integral weight onГ 0. Math. Ann.248 249–266 (1980)Google Scholar
  11. [M]
    H. Maass: Über eine Spezialschar von Modulformen zweiten Grades I, II, III, Inv. Math. 52 (1979) 95–104, Inv. Math 53 (1979) 249–253, and Inv. Math. 53 (1979) 255–265.Google Scholar
  12. [R]
    H. Rademacher: Topics in analytic number theory. Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen Band 169, Springer: Berlin Heidelberg New York 1973Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Richard E. Borcherds
    • 1
  1. 1.Mathematics departmentUniversity of California at BerkeleyUSA

Personalised recommendations