Advertisement

Insectes Sociaux

, Volume 41, Issue 4, pp 395–400 | Cite as

Three conditions for the evolution of eusociality: Are they sufficient?

  • B. J. Crespi
Research Articles

Summary

I hypothesize that three conditions, (1) food-shelter coincidence, (2) strong selection for defense, and (3) ability to defend, are sufficient, although not necessary, for the evolution of eusociality in group-living animals. Reasons for this association between ecology and eusociality include extremely high value of the habitat, possibilities for habitat inheritance, high relatedness in claustral situations, self-sufficiency of juveniles, greater ability of workers to reproduce, and trade-offs between defensive ability and dispersal.

Key words

Eusociality habitat defense ecology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe, T., 1990. Evolution of worker caste in termites. Proceedings of the 11th International Congress of the International Union for the Study of Social Insects, Bangalore, pp. 29–30.Google Scholar
  2. Abe, T., 1991. Ecological factors associated with the evolution of worker and soldier castes in termites.Ann. Entomol. 9:101–107.Google Scholar
  3. Alexander, B., 1986. Eusociality and parasitism in the Aculeate Hymenoptera. Proceedings of the 10th International Congress of the International Union for the Study of Social Insects, Munchen, p. 126.Google Scholar
  4. Alexander, R. D., 1974. The evolution of social behavior.Annu. Rev. Ecol. Syst. 5:325–383.Google Scholar
  5. Alexander, R. D., K. M. Noonan and B. J. Crespi, 1991. The evolution of eusociality. In:The Biology of the Naked Mole Rat (P. W. Sherman, J. U. M. Jarvis and R. D. Alexander, Eds.), Princeton University Press, Princeton, New Jersey, pp. 3–44.Google Scholar
  6. Andersson, M., 1984. The evolution of eusociality.Annu. Rev. Ecol. Syst. 15:165–189.Google Scholar
  7. Aoki, S., 1987. Evolution of sterile soldiers in aphids. In:Animal Societies: Theories and Facts (Y. Itô, J. L. Brown and J. Kikkawa, Eds.), Japan Sci. Soc. Press. Tokyo, pp. 53–65.Google Scholar
  8. Aoki, S. and U. Kurosu, 1987. Is aphid attack really effective against predators? A case study ofCeratovacuna lanigera. In:Population Structure, Genetics and Taxonomy of Aphids and Thysanoptera (J. Holman, J. Pelikan, A. F. G. Dixon and L. Weismann, Eds.), SPB Academic Publishing, The Hague, Netherlands, pp. 224–232.Google Scholar
  9. Crespi, B. J., 1992a. Eusociality in Australian gall thrips.Nature 359:724–726.Google Scholar
  10. Crespi, B. J., 1992b. The behavioural ecology of Australian gall thrips.J. Nat. Hist. 26:769–809.Google Scholar
  11. Crespi, B. J. and D. Yanega, 1994. The definition of eusociality.Behav. Ecol. (in press).Google Scholar
  12. Cruz, Y. P., 1981. A sterile defender morph in a polyembryonic hymenopterous parasite.Nature 294:446–447.Google Scholar
  13. Cruz, Y. P., 1986. The defender role of the precocious larvae ofCopidosomopsis tanytmemus Caltagirone (Encyrtidae, Hymenoptera).J. Exp. Zool. 237:309–318.Google Scholar
  14. Eberhard, W. G., 1975. The ecology and behavior of a subsocial pentatomid bug and two scelionid wasps: strategy and counterstrategy in a host and its parasites.Smithson. Contr. Zool. 205:1–39.Google Scholar
  15. Emlen, S., 1992. Evolution of cooperative breeding in birds and mammals. In:Behavioural Ecology. An Evolutionary Approach (J. R. Krebs and N. B. Davies, Eds.) Blackwell Scientific Publications, Oxford, pp. 301–337.Google Scholar
  16. Evans, H. E., 1977. Extrinsic versus intrinsic factors in the evolution of insect eusociality.BioScience 27:613–617.Google Scholar
  17. Grbic, M., P. J. Ode and M. R. Strand, 1992. Sibling rivalry and brood sex ratios in polyembryonic wasps.Nature 360:254–256.Google Scholar
  18. Hamilton, W. D., 1964. The genetical evolution of social behaviour.J. Theoret. Biol. 7:1–52.Google Scholar
  19. Hamilton, W. D., 1972. Altruism and related phenomena, mainly in social insects.Annu. Rev. Ecol. Syst. 3:193–232.Google Scholar
  20. Hamilton, W. D., 1978. Evolution and diversity under bark.Symp. R. Entomol. Soc. Lond. 9:154–175.Google Scholar
  21. Itô, Y., 1989. The evolutionary biology of sterile soldiers in aphids.Trends Ecol. Evol. 4:69–73.Google Scholar
  22. Jarvis, J. U. M., 1981. Eusociality in a mammal: cooperative breeding in naked mole-rat colonies.Science 212:571–573.PubMedGoogle Scholar
  23. Jarvis, J. U. M. and N. C. Bennett, 1993. Eusociality has evolved independently in two genera of bathyergid mole-rats-but occurs in no other subterranean mammal.Behav. Ecol. Sociobiol. 33:253–260.Google Scholar
  24. Jeanne, R. L., 1979. A latitudinal gradient in rates of ant predation.Ecology 606:1211–1224.Google Scholar
  25. Kent, D. S. and J. A. Simpson, 1992. Eusociality in the beetleAustroplatypus incompertus (Coleoptera: Curculionidae).Naturwiss. 79:86–87.Google Scholar
  26. Kukuk, P. K., G. C. Eickwort, M. Raveret-Richter, B. Alexander, R. Gibson, R. A. Morse and F. Ratnieks, 1989. Importance of the sting in the evolution of sociality in the Hymenoptera.Annals Ent. Soc. Amer. 82:1–5.Google Scholar
  27. Lin, N., 1964. Increased parasite pressure as a major factor in the evolution of social behavior in halictine bees.Ins. Soc. 11:187–192.Google Scholar
  28. Lin, N. and C. D. Michener, 1972. Evolution of sociality in insects.Quart. Rev. Biol. 47:131–159.Google Scholar
  29. Michener, C. D., 1985. From solitary to eusocial: need there be a series of intervening species? In:Experimental Behavioral Ecology and Sociobiology (B. Hölldobler and M. Lindauer, Eds.), Sinaeur Press, Sunderland, Mass., pp. 293–305.Google Scholar
  30. Michener, C. D. and D. J. Brothers, 1974. Were workers of eusocial Hymenoptera initially oppressed or altruistic?Proc. Natl. Acad. Sci. USA 71:671–674.Google Scholar
  31. Moffett, M.W., 1989. Samurai aphids, survival under seige.National Geographic, September, 406–422.Google Scholar
  32. Mound, L. A. and B.J. Crespi, 1994. Biosystematics of two new gall-inducing thrips with soldiers (Insecta: Thysanoptera) fromAcacia trees in Australia.J. Nat. Hist, (in press).Google Scholar
  33. Myles, T. G., 1988. Resource inheritance in social evolution from termites to man. In:The Ecology of Social Behavior (C. N. Slobodchikoff, Ed.), Academic Press, New York, pp. 379–423.Google Scholar
  34. Queller, D. C., 1989. The evolution of eusociality: reproductive head starts of workers.Proc. Natl. Acad. Sci. USA 86:3224–3226.Google Scholar
  35. Reeve, H. K. and P. Nonacs, 1992. Social contracts in wasp societies.Nature 359:823–825.Google Scholar
  36. Sherman, P. W., J. U. M. Jarvis and R. D. Alexander, 1991.The Biology of the Naked Mole Rat. Princeton University Press, Princeton, New Jersey.Google Scholar
  37. Starr, C. K., 1989. In reply, is the sting the thing?Annals Ent. Soc. Amer. 82:6–8.Google Scholar
  38. Starr, C. K., 1990. Holding the fort: colony defense in some primitively social wasps. In:Insect Defenses: Adaptive Mechanisms and Strategies of Prey and Predators (D. L. Evans and J. O. Schmidt, Eds.), State University of New York Press, pp. 421–461.Google Scholar
  39. Strassmann, J. E., 1993. Weak queen or social contract?Nature 363:502–503.Google Scholar
  40. Strassmann, J. E. and D. C. Queller, 1989. Ecological determinants of social evolution. In:The Genetics of Social Evolution (M. D. Breed and R. E. Page, Jr., Eds.), Westview Press, Boulder, Colorado, pp. 81–101.Google Scholar
  41. Strassmann, J. E., D. C. Queller and C. R. Hughes, 1988. Predation and the evolution of sociality in the paper waspPolistes bellicosus.Ecology 69:1497–1505.Google Scholar
  42. Trivers, R. L. and H. Hare, 1976. Haplodiploidy and the evolution of the social insects.Science 191:249–263.PubMedGoogle Scholar
  43. Whitham, T. G., 1979. Territorial behaviour inPemphigus gall aphids.Nature 279:324–325.Google Scholar
  44. Wilson, E. O., 1971.The Insect Societies. The Belknap Press of Harvard University Press, Cambridge, Mass.Google Scholar

Copyright information

© Birkhäuser Verlag 1994

Authors and Affiliations

  • B. J. Crespi
    • 1
  1. 1.Behavioural Ecology Research Group, Department of BiosciencesSimon Fraser UniversityBurnabyCanada

Personalised recommendations