Advertisement

CHEMOECOLOGY

, Volume 5, Issue 3–4, pp 139–146 | Cite as

Pyrrolizidine alkaloids between plants and insects: A new chapter of an old story

  • Thomas Hartmann
Seminar papers

Summary

Among alkaloids the pyrrolizidine alkaloids (PAs) play a unique role in the interactions between plants and adapted insects. InSenecio spp. (Asteraceae) PAs are synthesized in the roots as alkaloidN-oxides which are specifically translocated into shootsvia the phloem-path and channeled to the preferred sites of storage (e.g. inflorescences) where they are stored in the cell vacuoles. In differentSenecio spp. senecionineN-oxide is produced as the common product of biosynthesis, which subsequentlyvia a number of simple but specific reactions is transformed into typical speciesspecific PA-patterns. Insects from diverse taxa sequester PAs for their own defense. Lepidopterans (e.g. arctiids such asTyria jacobaeae andCreatonotos transiens) may hydrolyze plant acquired ester-PAs and convert the resulting necine base into insect-specific PAs by esterification with an acid of their own metabolism. Adapted arctiids and the grasshopperZonocerus take up PAs in the state of the tertiary amine.N-Oxides are reduced in the guts prior to uptake. In the bodies the tertiary PAs are rapidlyN-oxidized by a specific mixed-function oxigenase and are maintained in theN-oxide state. The importance of the reversible interconversion of the nontoxicN-oxide (pro-toxine) into the toxic tertiary alkaloid is discussed as the specific feature of PAs in plant-insect interactions.

Key words

biochemistry of plants sequestration by insects transformation by insects pyrrolizidine alkaloids alkaloidN-oxides Asteraceae Senecio Lepidoptera Arctiidae Tyria Creatonotos 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aplin RT, Benn MH, Rothschild M (1968) Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobaeae L.). Nature 219:747–748Google Scholar
  2. Aplin RT, Rothschild M (1972) Poisonous alkaloids in the body tissues of the garden tiger moth (Arctia caja L.) and the cinnabar moth (Tyria (=Callimorpha)jacobaeae L.) (Lepidoptera). Pp 579–595In de Vries A, Kochva E (eds) Toxins of Animal and Plant Origin. Vol 2. New York: Gordon & Breach Sci PubGoogle Scholar
  3. Biller A, Boppré M, Witte L, Hartmann T (1994) Pyrrolizidine alkaloids inChromolaena odorata: chemical and chemoecological aspects. Phytochemistry 35:615–619Google Scholar
  4. Bernays EA, Edgar JA, Rothschild M (1977) Pyrrolizidine alkaloids sequestered and stored by the aposematic grasshopperZonocerus variegatus. J Zool (London) 182:85–87Google Scholar
  5. Böttcher F, Adolph R, Hartmann T (1993) Homospermidine synthase, the first pathway-specific enzyme in pyrrolizidine alkaloid biosynthesis. Phytochemistry 32:679–689Google Scholar
  6. Böttcher F, Ober D, Hartmann T (1994) Biosynthesis of pyrrolizidine alkaloids: putrescine and spermidine are essential substrates of enzymatic homospermidine formation. Can J Chem 72:80–84Google Scholar
  7. Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26Google Scholar
  8. Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids — exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185Google Scholar
  9. Boppré M, Schneider D (1985) Pyrrolizidine alkaloids quantitatively regulate both scent organ morphogenesis and pheromone biosynthesis in maleCreatonotos moths (Lepidoptera: Arctiidae). J Comp Physiol 157A:569–577Google Scholar
  10. Boppré M, Seibt U, Wickler W (1984) Pharmacophagy in grasshoppers?Zonocerus being attracted to and ingesting pure pyrrolizidine alkaloids. Entomol exp appl 35:713–714Google Scholar
  11. von Borstel K, Hartmann T (1986) Selective uptake of pyrrolizidineN-oxides by cell suspension cultures from pyrrolizidine alkaloid producing species. Plant Cell Rep 5:39–42Google Scholar
  12. von Borstel K, Witte L, Hartmann T (1989) Pyrrolizidine alkaloid patterns in populations ofSenecio vulgaris, S. vernalis and their hybrids. Phytochemistry 28:1635–1638Google Scholar
  13. Brown KS Jr (1984a) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 307:707–709Google Scholar
  14. Brown KS Jr (1984b) Chemical ecology of dehydropyrrolizidine alkaloids in adult Ithomiinae (Lepidoptera: Nymphalidae). Rev Brasil Biol 44:435–460Google Scholar
  15. van Dam NM, Verpoorte R, van der Meijden E (1994) Extreme differences in pyrrolizidine alkaloid levels between leaves ofCynoglossum officinale L. Phytochemistry 37:1013–1016Google Scholar
  16. Dierich B (1992) Die Transformation von Senecionin-N-oxid in die artspezifischen Sekundäralkaloide einigerSenecio-Arten. Dissertation an der Naturwissenschaftlichen Fakultät der Technischen Universität BraunschweigGoogle Scholar
  17. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix. Proc Natl Acad Sci USA 85:5992–5996Google Scholar
  18. Dussourd DE, Harvis CA, Meinwald J, Eisner T (1989) Paternal allocation of sequestered plant pyrrolizidine alkaloid to eggs in the danaine butterfly,Danaus gilippus. Experientia 45:896–898Google Scholar
  19. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1991) Pheromonal advertisement of a nuptial gift by a male moth (Utetheisa ornatrix). Proc Natl Acad Sci USA 88:9224–9227Google Scholar
  20. Edgar, JA, Culvenor CCJ, Cockrum PA, Smith LW, Rothschild M (1980) Callimorphine: identification and synthesis of the cinnabar moth “metabolite”. Tetrahedron Lett 21:1383–1384Google Scholar
  21. Ehmke A, von Borstel K, Hartmann T (1988) AlkaloidN-oxides as transport and vacuolar storage compounds of pyrrolizidine alkaloids inSenecio vulgaris L. Planta 176:83–90Google Scholar
  22. Ehmke A, Witte L, Biller A, Hartmann T (1990) Sequestration,N-oxidation and transformation of pyrrolizidine alkaloids by arctiid moths (Lepidoptera). Z Naturforsch 45c:1185–1192Google Scholar
  23. Ehmke A, Rowell-Rahier M, Pasteels JM, Hartmann T (1991) Sequestration of ingested [14C] senecionineN-oxide in the exocrine defensive secretions of chrysomelid beetles. J Chem Ecol 17:2367–2379Google Scholar
  24. Eisner T, Meinwald J (1995) The chemistry of sexual selection. Proc Natl Acad Sci USA 92:50–55Google Scholar
  25. Evens GS, Malmberg RI (1989) Do polyamines have roles in plant development? Annu Rev Plant Physiol Mol Biol 40:235–269Google Scholar
  26. Hartmann T (1992) Alkaloids. Pp 79–121in Rosenthal GA, Berenbaum MR (eds) Herbivores: Their Interactions with Secondary Metabolites. Vol 1. 2nd ed. San Diego/CA: Academic PressGoogle Scholar
  27. Hartmann T (1994)Senecio spp.: Biochemistry of the formation of pyrrolizidine alkaloids in root cultures. Pp 339–355in Bajaj YPS (ed.) Biotechnology in Agriculture and Forestry. Vol 26, Medicinal and Aromatic Plants VI. D-Berlin: SpringerGoogle Scholar
  28. Hartmann T (1996) Diversity and variability of plant secondary metabolism: a mechanistic view. Entomol exp appl: in pressGoogle Scholar
  29. Hartmann T, Toppel G (1987) SenecionineN-oxide, the primary product of pyrrolizidine alkaloid biosynthesis in root cultures ofSenecio vulgaris. Phytochemistry 26:1639–1643Google Scholar
  30. Hartmann T, Witte L (1995) Chemistry, biology and chemoecology of the pyrrolizidine alkaloids. Pp 155–233in Peletier SW (ed.) Alkaloids: Chemical & Biological Perspectives. Vol 9. GB-Trowbridge: PergamonGoogle Scholar
  31. Hartmann T, Zimmer M (1986) Organ-specific distribution and accumulation of pyrrolizidine alkaloids during the life history of two annualSenecio species. J Plant Physiol 122:67–80Google Scholar
  32. Hartmann T, Biller A, Witte L, Ernst L, Boppré M (1990) Transformation of plant pyrrolizidine alkaloids into novel insect alkaloids by arctiid moths (Lepidoptera). Biochem Syst Ecol 18:549–554Google Scholar
  33. Hartmann T, Sander H, Adolph R, Toppel G (1988) Metabolic links between the biosynthesis of pyrrolizidine alkaloids and polyamines in root cultures ofSenecio vulgaris. Planta 175:82–90Google Scholar
  34. Hartmann T, Ehmke A, Eilert U, von Borstel K, Theuring C. Sites of synthesis, translocation and accumulation of pyrrolizidine alkaloidN-oxides inSenecio vulgaris. Planta 177:98–107Google Scholar
  35. Mattocks AR (1971) The occurrence and analysis of pyrrolizidine alkaloidN-oxides. Xenobiotica 1:451–453Google Scholar
  36. Nickisch-Rosenegk E von, Schneider D, Wink M (1990) Time-course of pyrrolizidine alkaloid processing in the alkaloid exploiting actiid moth,Creatonotos transiens. Z Naturforsch 45c:881–894Google Scholar
  37. Pasteels JM, Rowell-Rahier M, Randoux T, Braekman JC, Daloze D (1988) Pyrrolizidine alkaloids of probable host-plant origin in the pronotal and elytral secretion of the leaf beetleOreina cacaliae. Entomol exp appl 49:55–58Google Scholar
  38. Robins DJ (1989) Biosynthesis of pyrrolizidine alkaloids. Chem Soc Rev 18:375–408Google Scholar
  39. Rowell-Rahier M, Witte L, Ehmke A, Hartmann T, Pasteels JM (1991) Sequestration of plant pyrrolizidine alkaloids by chrysomelid beetles and selective transfer into the defensive secretions. Chemoecology 2:41–48Google Scholar
  40. Sander H, Hartmann T (1989) Site of synthesis, metabolism and translocation of senecionineN-oxide in cultured roots ofSenecio erucifolius. Plant Cell Tissue & Organ Cuit 18:19–31Google Scholar
  41. Schneider D (1987) The strange fate of pyrrolizidine alkaloids. Pp 123–142in Chapman RF, Bernays EA, Stoffolano JG (eds) Perspectives in Chemoreception and Behavior. New York: Springer-VerlagGoogle Scholar
  42. Spenser ID (1985) Stereochemical aspects of the biosynthetic routes leading to the pyrrolizidine and quinolizidine alkaloids. Pure & Appl Chem 57:453–470Google Scholar
  43. Srivenugopal KS and Adiga PR (1980) Enzymatic synthesis of symhomospermidine inLathyrus sativus (grass pea) seedlings. Biochem J 190:461–464Google Scholar
  44. Tait GH (1979) The formation of homospermidine by an enzyme fromRhodopseudomonas viridis. Biochem Soc Trans 7:199–200Google Scholar
  45. Toppel G, Witte L, Hartmann T (1988)N-Oxidation and degradation of pyrrolizidine alkaloids during germination ofCrotalaria scassellatii. Phytochemistry 17:3757–3760Google Scholar
  46. Toppel G, Witte L, Riebesehl B, von Borstel K, Hartmann T (1987) Alkaloid patterns and biosynthetic capacity of root cultures from some pyrrolizidine alkaloid producingSenecio species. Plant Cell Rep 6:466–469Google Scholar
  47. Winter CK, Segall HJ (1989) metabolism of pyrrolizidine alkaloids. Pp 24–40in Cheeke PR (ed.) Toxicants of Plant Origin. Vol I, Alkaloids. Boca Raton/FL: CRC PressGoogle Scholar
  48. Witte L, Ehmke A, Hartmann T (1990) Interspecific flow of pyrrolizidine alkaloids — from plantsvia aphids to ladybirds. Naturwissenschaften 77:540–543Google Scholar
  49. Witte L, Ernst L, Adam H, Hartmann T (1992) Chemotypes of two pyrrolizidine alkaloid-containingSenecio species. Phytochemistry 31:559–565Google Scholar
  50. Wink M, Schneider D (1988) Carrier-mediated uptake of pyrrolizidine alkaloids in larvae of the aposematic and alkaloid-exploiting mothCreatonotos. Naturwissenschaften 75:524–525Google Scholar
  51. Yamamoto S, Nagata S, Kusaba K (1993) Purification and characterization of homospermidine synthase fromAcinetobacter tartarogenes ATCC 31105. J Biochem 114:45–49Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Thomas Hartmann
    • 1
  1. 1.Institut für Pharmazeutische BiologieTechnische UniversitätBraunschweigGermany

Personalised recommendations