, Volume 5, Issue 3–4, pp 127–138 | Cite as

Sequestration of plant secondary compounds by butterflies and moths

  • Ritsuo Nishida
Seminar papers


A number of aposematic butterfly and moth species sequester toxic substances from their host plants. Some of these insects can detect the toxic compounds during food assessment. Some pipevine swallowtails use aristolochic acids among the host finding cues during oviposition and larval feeding and accumulate the toxins in the body tissues throughout all life stages. Likewise, a danaine butterfly,Idea leuconoe, which sequesters high concentrations of pyrrolizidine alkaloids in the body, lays eggs in response to the specific alkaloid components contained in the apocynad host. Insect species sharing the same poisonous host plants may differ in the degree of sequestration of toxins. Two closely ralated aposematic geometrid moth species,Arichanna gaschkevitchii andA. melanaria, sequester a series of highly toxic diterpenoids (grayanotoxins) in different degrees, while a cryptic geometrid species,Biston robstus, does not sequester the toxins, illustrating the diversity in adaptation mechanisms even within the same subfamily. By contrast, a number of lepidopteran species store the same compounds though feeding upon taxonomically diverse plant species. A bitter cyanoglycoside, sarmentosin, was characterised from several moth species in the Geometridae, Zygaenidae and Yponomeutidae, and from the apollo butterflies,Parnassius spp. (Papilionidae), although each species feeds on different groups of plants.

Interspecific similarities and differences in life history and ecology are discussed in relation to variable characteristics of sequestration of plant compounds among these lepidopteran insects.

Key words

sequestration defence substances toxic substances pheromones host selection aristolochic acids pyrrolizidine alkaloids grayanotoxins cyanoglycosides Lepidoptera 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abe F, Yamauchi T (1987) Parsonine, a pyrrolizidine alkaloid fromParsonsia laevigata. Chem Pharm Bull 35:4661–4663Google Scholar
  2. Abe F, Nagao T, Okabe H, Yamauchi T, Marubayashi N, Ueda I (1990) Parsonsianine, a macrocyclic pyrrolizidine alkaloid from the leaves ofParsonsia laevigata (Studies onParsonsia. III). Chem Pharm Bull 38:2127–2129Google Scholar
  3. Abe F, Yamauchi T, Yaga S, Minato K (1991) Pyrrolizidine alkaloids fromParsonsia laevigata in Okinawa Island (Studies onParsonsia. V). Chem Pharm Bull 39:1576–1577Google Scholar
  4. Aplin RT, Benn MH, Rothschild M (1968) Poisonous alkaloids in the body tissues of the cinnabar moth (Callimorpha jacobeae L.). Nature 219:747–748Google Scholar
  5. Aplin RT, d'Archy Ward R, Rothschild M (1975) Examination of the large white and small white butterflies (Pieris spp.) for the presence of mustard oil and mustard oil glycosides. J Entomol 30:73–78Google Scholar
  6. Blum MS (1981) Chemical Defenses of Arthropods. New York: Academic PressGoogle Scholar
  7. Boppré M (1978) Chemical communication, plant relationships, and mimicry in the evolution of danaid butterflies. Entomol exp appl 24:264–277Google Scholar
  8. Boppré M (1986) Insects pharmacophagously utilizing defensive plant chemicals (pyrrolizidine alkaloids). Naturwissenschaften 73:17–26Google Scholar
  9. Boppré M (1990) Lepidoptera and pyrrolizidine alkaloids. Exemplification of complexity in chemical ecology. J Chem Ecol 16:165–185Google Scholar
  10. Boros CA, Stermitz FR, McFarland N (1991) Processing of iridoid glycoside antirrinoside fromMaurandya antirrhiniflora (Scrophulariaceae) byMeris paradoxa (Geometridae) andLepipolys species (Noctuidae). J Chem Ecol 17:1123–1133Google Scholar
  11. Bowers MD (1984) Iridoid glycosides and host-plant specificity in larvae of the buckeye butterfly,Junonia coenia (Nymphalidae). J Chem Ecol 11:1567–1577Google Scholar
  12. Bowers MD, Collinge SK (1992) Fate of iridoid glycosides in different life stages of the buckeye,Junonia coenia (Lepidoptera: Nymphalidae). J Chem Ecol 18:817–831Google Scholar
  13. Brower JVZ (1958) Experimental studies of mimicry in some North American butterflies. II.Battus philenor andPapilio troilus, P. polyxenes andP. glaucus. Evolution 12:123–136Google Scholar
  14. Brower LP (1969) Ecological chemistry. Sci Am 220:22–29Google Scholar
  15. Brower LP (1984) Chemical defence in butterflies. Pp 109–134in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Symp R Entomol Soc Lond 11. GB-London: Academic PressGoogle Scholar
  16. Brown KS (1984) Adult-obtained pyrrolizidine alkaloids defend ithomiine butterflies against a spider predator. Nature 309:707–709Google Scholar
  17. Conner WE, Eisner T, Van der Meer RK, Guerrero A, Meinwald J (1981) Precopulatory sexual interaction in an arctiid moth (Utetheisa ornatrix): role of a pheromone derived from dietary alkaloids. Behav Ecol Sociobiol 9:227–235Google Scholar
  18. David WAL, Gardiner BOC (1962) Oviposition and the hatching of the eggs ofPieris brassicae (L.) in a laboratory culture. Bull Entomol Res 53:91–109Google Scholar
  19. Davis RH, Nahrstedt A (1979) Linamarin and lotaustralin as the source of cyanide inZygaena filipendulae L. (Lepidoptera). Comp Biochem Physiol 69B:903–904Google Scholar
  20. Davis RH, Nahrstedt A (1984) Cyanogenesis in insects. Pp 635–654in Kerkut GA, Gilbert LI (eds) Comprehensive Insect Physiology, Biochemistry and Pharmacology. II. Pharmacology. GB-Oxford: Pergamon PressGoogle Scholar
  21. Dethier VG (1941) Chemical factors determining the choice of food plants byPapilio larvae. Am Nat 75:61–73Google Scholar
  22. Dixon CA, Erickson JM, Kellett DN, Rothschild M (1978) Some adaptations betweenDanaus plexippus and its food plant, with notes onDanaus chrysippus andEuploea core (Insecta: Lepidoptera). J Zool (Lond) 185:437–467Google Scholar
  23. Duffey SS (1980) Sequestration of plant natural products by insects. Annu Rev Entomol 25:447–477Google Scholar
  24. Dussourd DE, Ubik K, Harvis C, Resch J, Meinwald J, Eisner T (1988) Biparental defensive endowment of eggs with acquired plant alkaloid in the mothUtetheisa ornatrix. Proc Natl Acad Sci 85:5992–5996Google Scholar
  25. Dussourd DE, Harvis CA, Meinwald J, Eisner T (1989) Paternal allocation of sequestered plant pyrrolizidine alkaloids to eggs in the danaine butterfly,Danaus gilippus. Experientia 45:896–898Google Scholar
  26. Edgar JA (1982) Pyrrolizidine alkaloids sequestered by Solomon Island danaine butterflies. The feeding preferences of the Danainae and Ithomiinae. J Zool (Lond) 196:385–399Google Scholar
  27. Edgar JA (1984) Parsonsieae: ancestral larval foodplants of the Danainae and Ithomiinae. Pp 91–93in Vane-Wright RI, Ackery PR (eds) The Biology of Butterflies. Symp R Entomol Soc Lond 11. GB-London: Academic PressGoogle Scholar
  28. Edgar JA, Culvenor CCJ, Robinson GS (1973) Hairpencil dihydropyrrolizines of Danainae from the New Hebrides. J Austr Entomol Soc 12:144–150Google Scholar
  29. Edgar JA, Culvenor CCJ, Pliske TE (1974) Coevolution of danaid butterflies with their host plants. Nature 250:646–648Google Scholar
  30. Edgar JA, Eggers NJ, Jones AJ, Russell GB (1980) Unusual macrocyclic pyrrolizidine alkaloids fromParsonsia heterophylla A. Cunn andParsonsia spiralis Wall. (Apocynaceae). Tetrahedron Lett 21:2657–2660Google Scholar
  31. Ehrlich PR, Raven PH (1964) Butterflies and plants: a study in coevolution. Evolution 18:586–608Google Scholar
  32. Eisner T, Kluge AF, Ikeda MI, Meinwald YC, Meinwald J (1971) Defensive mechanisms of arthropods XXXIX. Sesquiterpenes in the osmeterial secretion of a papilionid butterffy,Battus polydamas. J Insect Physiol 17:245–250Google Scholar
  33. EI-Naggar SF, Doskotch RW, Odell TM, Girard L (1980) Antifeedant diterpenes for the gypsy moth larvae fromKalmia latifolia: Isolation and characterization of ten grayanoids. J Nat Products 43:617–631Google Scholar
  34. Euw von J, Reichstein T, Rothschild M (1968) Aristolochic acid-I in the swallowtail butterflyPachliopta aristolochiae Fabr. (Papilionidae). Isr J Chem 6:659–607Google Scholar
  35. Fang SD, Yan XQ, Li CF, Fan ZY, Xu XR, Xu JS (1982) Studies on the chemical constituents ofSedum sarmentosum Bunge. IV. The structure of sarmentosin and isosarmentosin. Acta Chimica Sinica 40:273–280Google Scholar
  36. Feeny P (1992) The evolution of chemical ecology: contribution from the study of herbivorous insects. Pp 1–44in Rosenthal GA, Janzen DH (eds) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I: The Chemical Participants. 2nd ed. New York: Academic PressGoogle Scholar
  37. Feeny P, Rosenberry L, Carter M (1983) Chemical aspects of oviposition behavior in butterflies. Pp 27–76in Ahmad S (ed) Herbivorous Insects. New York: Academic PressGoogle Scholar
  38. Frazer JFD, Rothschild M (1960) Defence mechanisms in warningly-coloured moth and other insects. Int Congr Entomol (11) 3:249–256Google Scholar
  39. Guilford T, Nicol C, Rothschild M, Moore B (1987) The biological roles of pyrazines: evidence for a warning odour function. Biol J Linn Soc 31:113–128Google Scholar
  40. Hikino H, Ogura M, Fushiya S, Konno C, Takemoto T (1977) Stereostructure of asebotoxin VI, VIII and IX, toxins ofPieris japonica. Chem Pharm Bull 25:523–524Google Scholar
  41. Hirashima Y, Yano K, Chujo M (1974) Insect pest ofRhododendron kiusianum Makino (Ericaceae), with special reference to out-breaks ofInurois sp. andArichanna melanaria Linnaeus (Lepidotera, Geometridae) on Mts. Kuju and Kirishima. Sci Bull Fac Agric Kyushu Univ 29:87–115Google Scholar
  42. Honda K (1980a) Odor of a papilionid butterfly. Odoriferous substances emitted byAtrophaneura alcinous alcinous (Lepidoptera: Papilionidae). J Chem Ecol 5:867–873Google Scholar
  43. Honda K (1980b) Osmeterial secretions of papilionid larvae in the generaLuehdorfia, Graphium and Atrophaneua (Lepidoptera). Insect Biochem 10:583–588Google Scholar
  44. Honda K, Hayashi N (1995) Chemical nature of larval osmeterial secretions of papilionid butterflies in the generaParnassius, Sericinus and Pachliopta. J Chem Ecol 21:859–867Google Scholar
  45. Hsiao TH, Hsiao C, Rothschild M (1980) Characterization of a protein toxin from dried specimens of the garden tiger moth (Arctia caja L.). Toxicon 18:291–299Google Scholar
  46. Huang PK (1980) A study on the bionomic characteristics and control of theBishofia burnet,Histia rhodope Cramer (Lepidoptera, Zygaenidae). J Fujian Agric College 61–79Google Scholar
  47. Jones DA, Parsons J, Rothschild M (1962) Release of HCN from crushed tissues of all stages in the life cycle of species of the Zygaeninae. Nature 193:52–53Google Scholar
  48. Kaiya T, Sakakibara J (1982) Diterpenoids from ericaceous plants. Annu Rep Faculty of Pharmaceutical Sci, Nagoya City Univ 30:1–34Google Scholar
  49. Kettlewell BD (1961) The phenomenon of industrial melanism in Lepidoptera. Annu Rev Entomol 6:245–262Google Scholar
  50. Kim CS, Nishida R, Fukami H, Abe F, Yamauchi T (1994) 14-DeoxyparsonsianidineN-oxide: a pyrrolizidine alkaloid sequestered by the giant danaine butterfly,Idea leuconoe. Biosci Biotech Biochem 58:980–981Google Scholar
  51. Klockars GK, Bowers MD, Cooney B (1993) Leaf variation in iridoid glycoside content ofPlantago laceolata (Plantaginaceae) and oviposition of the buck eye,Junonia coenia (Nymphalidae). Chemoecology 4:72–78Google Scholar
  52. L'Empereur KM, Stermitz FR (1990) Iridoid glycoside metabolism and sequestration byPoladryas minuta (Lepidoptera:Nymphalidae)feeding on Penstimon virgatus (Scrophulariaceae).J Chem Ecol 16: 1495–1506Google Scholar
  53. Mager PP, Seese A, Takeya K (1981) Structure-toxicity relationships applied to grayanotoxins. Pharmazie 36:382–383Google Scholar
  54. Malcolm S, Rothschild M (1983) A danaid mullerian mimic,Euploea core amymone (Cramer) lacking cardenolides in the pupal and adult stage. Biol J Lin Soc 19:27–33Google Scholar
  55. Marsh N, Rothschild M (1974) Aposematic and cryptic Lepidoptera tested on the mouse. J Zool (Lond) 174:89–122Google Scholar
  56. Masutani T, Seyama I, T. Narahashi T, Iwasa J (1981) Strucure-activity relationship for grayanotoxin derivatives in frog skeletal muscle. J Pharmacol Exp Ther 217:812–819Google Scholar
  57. Matsumoto M (1994) 2′-Hydroxy-4′-methoxyacetophenone (paeonol) inExacum affine cv. Biosci Biotech Biochem 58:1892–1893Google Scholar
  58. Meinwald J, Meinwald YC, Wheeler JW, Eisner T, Brower LP (1966) Major components in the exocrine secretion of a male butterfly (Lycorea). Science 151:583–585Google Scholar
  59. Meinwald J, Meinwald YC, Mazzocchi PH (1969) Sex pheromone of the queen butterfly: Chemistry. Science 164:1174–1175Google Scholar
  60. Mix DB, Guinaudeau H, Shamma M (1983) The aristolochic acids and aristolactams. J Nat Prod 45:657–666Google Scholar
  61. Mooe BP, Brown WV, Rothschild M (1990) Methylalkypyrazines in aposematic insects, their host plants and mimics. Chemoecology 1:43–51Google Scholar
  62. Nago H, Matsumoto M (1994) An ecological role of volatiles produced byLasiodiplodia theobromae. Biosci Biotech Biochem 58:1267–1272Google Scholar
  63. Nahrstedt A (1988) Cyanogenesis and the role of cyanogenic compounds in insects. Pp 131–150in Evered D, Harnett S (eds) Cyanide Compounds in Biology. CIBA Symp 140. GB-Chichester: John Wiley & SonsGoogle Scholar
  64. Nahrstedt A, Davis RH (1986) Uptake of linamarin and lotaustralin from their food-plant by larvae ofZygaena trifolii. Phytochemistry 25:2299–2302Google Scholar
  65. Nahrstedt A, Walther A, Wray V (1982) Sarmentosin epoxide, a new cyanogenic compound fromSedum cepaea. Phytochemistry 21:107–110Google Scholar
  66. Nishida R (1995) Oviposition stimulants of swallowtail butterflies. Pp 17–26in Scriber JM, Tsubaki Y, Lederhous RC (eds) Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Gainesville/FL: Scientific PublishersGoogle Scholar
  67. Nishida R, Fukami H (1989a). Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous, to aristolochic acids. J Chem Ecol 15:2549–2563Google Scholar
  68. Nishida R, Fukami H (1989b) Oviposition stimulants of an Aristolochiaceae-feeding swallowtail butterfly,Atrophaneura alcinous. J Chem Ecol 15:2565–2575Google Scholar
  69. Nishida R, Rothschild M (1995) A cyanoglucoside stored by aSedum-feeding Apollo butterfly,Parnassius phoebus. Experientia 51:267–269Google Scholar
  70. Nishida R, Fukami H, Irie R. Kumazawa Z (1990a) Accumulation of highly toxic ericaceous diterpenoids by the geometrid moth,Arichanna gaschkevitchii. Agric Biol Chem 54:2347–2352Google Scholar
  71. Nishida R, Kim CS, Kawai K, Fukami H (1990b) Methyl hydroxy-benzoates as potent phagostimulants for a male danaid butterfly,Idea leuconoe. Chem Express 5:497–500Google Scholar
  72. Nishida R, Kim CS, Fukami H, Irie R (1991) IdeamineN-oxides: Pyrrolizidine alkaloids sequestered by a danaine butterfly,Idea leuconoe. Agric Biol Chem 55:1787–1797Google Scholar
  73. Nishida R, Weintraub JD, Feeny P, Fukami H (1993) Aristolochic acids fromThottea spp. (Aristolochiaceae) and the osmeterial secretions ofThottea-feeding troidine swallowtail larvae (Papilionidae). J Chem Ecol 19:1587–1594Google Scholar
  74. Nishida R, Rothschild M, Mummery R (1994) A cyanoglucoside, sarmentosin, from the magpie moth,Abraxas grossulariata, Geometridae: Lepidoptera. Phytochemistry 36:37–38Google Scholar
  75. Nishida R, Schulz S, Kim CS, Fukami H, Kuwahara Y, Honda K, Hayashi N (1995) Male pheromone of a giant danaine butterfly,Idea leuconoe. J Chem Ecol: submittedGoogle Scholar
  76. Pereyra PC, Bowers MD (1988) Iridoid glycosides as oviposition stimulants for the buckeye butterfly,Junonia coenia (Nymphalidae). J Chem Ecol 14:917–928Google Scholar
  77. Pliske TE, Eisner T (1969) Sex pheromone of the queen butterfly: biology. Science 164:1170–1172Google Scholar
  78. Pliske TE, Edgar JA, Culvenor CCJ (1976) The chemical basis of attraction of ithomiine butterflies to plants containing pyrrolizidine alkaloids J Chem Ecol 2:255–262Google Scholar
  79. Poulton EB (1890) The Colour of Animals. 2nd ed. GB-London: Kegan PaulGoogle Scholar
  80. Reichstein T, Euw Jv, Parsons JA, Rothschild M (1968) Heart poison in the monarch butterfly. Science 161:861–866Google Scholar
  81. Rothschild M (1961) Defensive odours and Müllerian mimicry among insects. Trans R Entomol Soc Lond 113:101–121Google Scholar
  82. Rothschild M (1967) Mimicry, the deceptive way of life. Nat Hist (NY) 76:44–51Google Scholar
  83. Rothschild M (1973) Secondary plant substances and warning coloration in insects. Symp R Entomol Soc Lond 6:59–83Google Scholar
  84. Rothschild M (1979) Mimicry, butterflies and plants. Symb Bot Upsal 22:82–99Google Scholar
  85. Rothschild M, Edgar JA (1978) Pyrrolizidine alkaloids fromSenecio vulgaris sequestered and stored byDanaus plexippus. J Zool (Lond) 186:347–349Google Scholar
  86. Rothschild M, Mummery R (1985) Carotenoids and bile pigments in danaid and swallowtail butterflies. Biol J Linn Soc 24:1–14Google Scholar
  87. Rothschild M, Reichstein RT, Euw Jv, Aplin RT, Harman RRM (1970) Toxic Lepidoptera. Toxicon 8:293–299Google Scholar
  88. Rothschild M, Euw Jv, Reichstein T (1972) Aristolochic acids stored byZerynthia polyxena (Lepidoptera). Insect Biochem 2:334–343Google Scholar
  89. Rothschild M, Aplin RT, Cockrum PA, Edgar JA, Fairweather P, Lees R (1979) Pyrrolizidine alkaloids in arctiid moth with a discussion on host plant relationships and the role of these secondary plant substances in the Arctiidae. Biol J Linn Soc 12:305–326Google Scholar
  90. Rothschild M, Moore BP, Brown WV (1984) Pyrazines as warning odour components in the Monarch butterfly, Danaus plexippus, and in moths of the generaZygaena andAmata (Lepidoptera). Biol J Linn Soc 23:375–380Google Scholar
  91. Rothschild M, Mummery R, Farrell C (1986a) Carotenoids of butterfly models and their mimics (Lep: Papilionidae and Nymphalidea) Biol J Linn Soc 28:359–372Google Scholar
  92. Rothschild M, Nash RJ, Bell EA (1986b) Cycasin in the endangered butterflyEumaeus atala florida. Phyochemistry 25:1853–1854Google Scholar
  93. Sachdev-Gupta K, Feeny PP, Carter M (1993) Oviposition stimulants for the pipevine swallowtail butterfly,Battus philenor (Papilionidea), from anAristolochia host plant: synergism between inositols, aristolochic acids and monogalactosyl diglyceride. Chemoecology 4:19–28Google Scholar
  94. Schneider D, Boppré M, Schneider H, Thompson WR, Boriack CJ, Petty RL, Meinwald J (1975) A pheromone precursor and its uptake in maleDanaus butterflies. J Comp Physiol 97:245–256Google Scholar
  95. Schulz S, Nishida R (1995) Composition of the pheromone system of the male danaine butterfly,Idea leuconoe. Tetrahedron: in pressGoogle Scholar
  96. Schulz S, Francke W, Edgar J, Schneider D (1988) Volatile compounds from androconial organs of danaine and ithomiine butterflies. Z Naturforsch 43c:99–104Google Scholar
  97. Schulz S, Boppré M, Vane-Wright RI (1993) Specific mixture of secretions from male scent organs of African milkweed butterflies (Danainae). Phil Trans R Soc Lond B 342:161–181Google Scholar
  98. Scriber JM, Feeny P (1979) Growth of herbivorous caterpillars in relation to feeding specialization and to the growth form of their food plants. Ecology 60:829–850Google Scholar
  99. Seyama I, Narahashi T (1981) Modulation of sodium channels of squid nerve membranes by grayanotoxin I. J Pharmacol Exp Ther 219:614–624Google Scholar
  100. Siegler DS (1991) Cyanide and cyanogenic glycosides. Pp 35–77in Rosenthal GA, Janzen DH (eds) Herbivores: Their Interactions with Secondary Plant Metabolites. Vol I: The Chemical Participants. 2nd ed. New York: Academic PressGoogle Scholar
  101. Stermitz FR, Gardner DR, Odendaal FJ, Ehrlich PR (1986)Euphydryas anicia (Lepidoptera: Nymphalidae) utilization of iridoid glycosides fromCastilleja andBesseya (Scrophulariaceae) host plants. J Chem Ecol 12:1459–1468Google Scholar
  102. Stermitz FR, Gardner DR, McFarland N (1988) Iridoid glycoside sequestration by two aposematicPenstimon-feeding geometrid larvae. J Chem Ecol 14:435–441Google Scholar
  103. Trigo JR, Brown KS (1990) Variation of pyrrolizidine alkaloids in Ithomiinae: a comparative study between species feeding on Apocynaceae and Solanaceae. Chemoecology 1:22–29Google Scholar
  104. Uesugi K (1995) Mimicry inPapilio polytes and its ecological meaning. Pp 165–172in Scriber JM, Tsubaki Y, Lederhous RC (eds) Swallowtail Butterflies: Their Ecology and Evolutionary Biology. Gainesville/FL: Scientific PublGoogle Scholar
  105. Urzúa A, Priestap H (1985) Aristolochic acids fromBattus polydamas. Biochem Syst Ecol 13:169–170Google Scholar
  106. Urzúa A, Salgado G, Gassels BK, Eckhardt G (1983) Aristolochic acids inAristolochia chilensis and theAristolochia-feeder,Battus archidamas (Lepidoptera). Collect Czech Chem Commun 48:1513–1519Google Scholar
  107. Verschaffelt E (1811) The cause determining the selection of food in some herbivorous insects. Proc Acad Sci Amsterdam 13:536–542Google Scholar
  108. Witthohn K, Naumann CM (1987) Cyanogenesis — a general phenomenon in the Lepidoptera? J Chem Ecol 13:1789–1809Google Scholar
  109. Wray V, David RH, Nahrstedt A (1983) Biosynthesis of cyanogenic glycosides in butterflies and moths: incorporation of valine and isoleucine into linamarin and lotaustralin byZygaena andHeliconius species (Lepidoptera). Z Naturforsch 38c:583–588Google Scholar
  110. Zushi S, Miyagawa J, Yamamoto M, Kataoka K, Seyama I (1993) Effect of grayanotoxin on the frog neuromuscular junction. J Pharmacol Exp Ther 226:269–275Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • Ritsuo Nishida
    • 1
  1. 1.Pesticide Research Institute, Faculty of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations