Insectes Sociaux

, Volume 42, Issue 3, pp 287–302 | Cite as

Sociality in a bark-dwelling huntsman spider from Australia,Delena cancerides Walckenaer (Araneae: Sparassidae)

  • D. M. Rowell
  • L. Avilés
Research Articles


Social behavior is reported for the first time in a member of the family Sparassidae (Araneae), the Australian huntsman spiderDelena cancerides Walckenaer. Unlike any previously known social spider, this is a bark dwelling species and, thus, its sociality cannot have its basis on an aerial web, the structure that has been considered central to the evolution of sociality in other spider species. Colonies ofD. cancerides may comprise up to 300 individuals living in close physical contact under the exfoliating bark of deadAcacia, Callitris andCasuarina species. Specimens maintained in the laboratory feed communally and capture prey jointly. Although this intranest tolerance and communal feeding behavior is reminiscent of other highly social spiders,D. cancerides notably differs from these other species in the extreme aggression shown towards members of foreign colonies, its outbred population structure, and lack of sex ratio bias. We suggest that sociality in this species may have been facilitated by the presence of extended maternal care in the ancestral phylogenetic lineage, as suggested by the occurrence of such behavior in related nonsocial species, and that colonial living may have arisen as a consequence of the reduction and fragmentation ofDelena's habitat associated with the rise to dominance of the eucalypts. The apparent colony recognition observed may have evolved becauseDelena's hunting habits may require mechanisms to locate one's own colony after foraging expeditions and to exclude wandering outsiders from entering one's nest, in contrast to web-bound species that do not need to leave their nest to forage. How the observed outbreeding is accomplished in the face ofDelena's extreme intolerance to members of other nests, as well as how new colonies are formed, are issues that have yet to be investigated.

Key words

Sex ratio population structure hunting social spider cooperation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Avilés, L., 1993. Interdemic selection and the sex ratio: A social spider perspective.Am. Nat. 142:320–345.Google Scholar
  2. Avilés, L., 1994. Social behavior in a web-building lynx spider,Tapinillus sp. (Araneae: Oxyopidae).Biol. J. Linnean Soc. 51:163–176.Google Scholar
  3. Avilés, L., 1995. Causes and consequences of cooperation and permanent-sociality in spiders. In:Social Competition and Cooperation among Insects and Arachnids, II, Evolution of Sociality (J. Choe and B. Crespi, Eds.) Princeton University Press, Princeton, N. J.Google Scholar
  4. Avilés, L. and W. P. Maddison, 1991. When is the sex ratio biased in social spiders? Chromosome studies of embryos and male meiosis inAnelosimus species (Araneae: Theridiidae).J. Arachnol. 19:126–135.Google Scholar
  5. Burgess, J. W., 1978. Social behaviour in group-living spider species.Symp. Zool. Soc. Lond. 42:69–78.Google Scholar
  6. Buskirk, R. E., 1981. 4. Sociality in the Arachnida. In:Social Insects II (H. R. Hermann, Ed.), pp. 281–367. Academic Press, New York, London.Google Scholar
  7. Coleman, E., 1941. Further notes on the huntsman spider (Isopoda immanis).Via. Nat. 58:88–90.Google Scholar
  8. D'Andrea, M., 1987. Social behaviour in spiders (Arachnida, Araneae).Itali. J. Zool., N. S. Monogr. 3.Google Scholar
  9. Evans, T. A. (in press). Two new species of social crab spiders of the genusDiaea from Eastern Australia, their natural history and distribution.Rec. West. Austral. Mus., supp. 151–158.Google Scholar
  10. Hamilton, W. D., 1967. Extraordinary sex ratios.Science 156:477–488.Google Scholar
  11. Hancock, A. J. and D. M. Rowell (in press). A chromosomal hybrid zone inDelena cancerides.Aust. J. Zool. Google Scholar
  12. Henschel, J. R., 1990. The biology ofLeucorchestris arenicola (Araneae: Heteropodidae), a burrowing spider of the Namib dunes. In:Namib Ecology: 25 years of Namib Research (M. K. Seely, Ed.), pp. 115–127.Transvaal Mus. Monograph No. 7, Transvaal Museum, Pretoria.Google Scholar
  13. Hogg, H. R., 1902. On the Australian spiders of the subfamily Sparassinae.Proc. zool. Soc. Lond. 2:218–279.Google Scholar
  14. Kirkendall, L. R. and K. Raffa, 1995. Interactions among males, females and offspring in bark beetles: the significance of living in holes for the evolution of social behavior. In:Social Competition and Cooperation among Insects and Arachnids, II, Evolution of Sociality (J. Choe and B. Crespi, Eds.) Princeton University Press, Princeton, New Jersey, USA.Google Scholar
  15. Krafft, B., 1979. Organisation et évolution des société d'araignées.J. Psychol 1:23–51.Google Scholar
  16. Kullmann, E., 1972. Evolution of social behavior in spiders (Araneae; Eresidae and Theridiidae).Am. Zool. 12:419–426.Google Scholar
  17. Lange, R. T., 1980. Evidence for lid cells and host specific microfungi in the search for TertiaryEucalyptus.Review of Palaeobotany and Palynology 29:29–33.Google Scholar
  18. Main, B. Y., 1988. The biology of a social thomisid spider.Austral. Arachnol. [Aust. Ent. Soc. Misc. Publ., Brisbane] 5:55–73.Google Scholar
  19. Nentwig, W., 1985. Social spiders catch larger prey: a study ofAnelosimus eximius (Araneae: Theridiidae).Behav. Ecol. Sociobiol. 17:79–85.Google Scholar
  20. Pasquet, A. and B. Krafft, 1992. Cooperation and prey capture efficiency in a social spider,Anelosimus eximius (Araneae, Theridiidae).Ethology 90:121–133.Google Scholar
  21. Riechert, S. E. and R. M. Roeloffs, 1993. Evidence for and consequences of inbreeding in the cooperative spiders. In:The Natural History of Inbreeding and Outbreeding. (N. Thornhill. Ed.) The University of Chicago Press, Chicago, pp. 283–303.Google Scholar
  22. Roewer, C. F., 1954 Katalog der Araneae von 1758 bis 1940 bsw. 1954 2b:927–1751. Inst. Roy. Sci Nat. Belgique, Bruxelles.Google Scholar
  23. Rowell, D. M., 1985. Complex sex-linked fusion heterozygosity in the Australian huntsman spiderDelena cancerides (Araneae: Sparassidae).Chromosoma 93:169–176.Google Scholar
  24. Rowell, D. M., 1986. Complex sex-linked translocation heterozygosity and its role in the evolution of social behaviour.Can. J. Genet. Cytol. 28:168–170.Google Scholar
  25. Rowell, D. M., 1988. The chromosomal constitution ofDelena cancerides Walck. (Araneae: Sparassidae) and its role in the maintenance of social behaviour. In:Australasian Arachnology, Australian Entomology Society, Miscellaneous Publications Series. No. 5.Google Scholar
  26. Rowell, D. M., 1990. Complex fusion heterozygosity inDelena cancerides (Araneae: Sparassidae): An alternative to speciation by monobrachial homology.Genetica 80:139–157.Google Scholar
  27. Rowell, D. M., 1991a. Chromosomal fusion and meiotic behaviour inDelena cancerides (Araneae: Sparassidae) I. Pairing and X-chromosome segregation.Genome 34:561–566.Google Scholar
  28. Rowell, D. M., 1991b. Chromosomal fusion and meiotic behaviour inDelena cancerides (Araneae: Sparassidae) II. Chiasma position and its implications for speciation.Genome 34:567–573.Google Scholar
  29. Rowell, D. M. and B. Y. Main, 1992. Sex ratio in the social thomisid,Diaea socialis. J. Arachnol. 20:200–206.Google Scholar
  30. Sokal, R. R. and F. J. Rohlf, 1981. Biometry, 2nd Edition. W. H. Freeman and Co., San Francisco.Google Scholar
  31. Simon, E., 1880. Révision de la famille des Sparassidae (Arachnides).Actes de la Société Linnéenne de Bordeaux 1880:223–351.Google Scholar
  32. Singh, G., 1982. Chapter 4. Environmental upheaval. In:A History of Australian Vegetation. (Smith J. M. B. ed.) McGraw-Hill, Sydney.Google Scholar
  33. Smith, D. R. and M. S. Engel, 1994. Population structure in an Indian cooperative spider,Stegodyphus sarasinorum Karsch (Eresidae).J. Arachnol. 22:108–113.Google Scholar
  34. Shear, W. A., 1970. The evolution of social phenomena in spiders.Bull. Brit. Arach. Soc. 1:65–76.Google Scholar
  35. Swofford, D. L. and R. K. Seiander, 1981. A computer program for the analysis of allelic variation in genetics.J. Hered. 72:281–283.Google Scholar
  36. Tretzel, E., 1961. Biologie, Ökologie und Brutpflege vonCoelotes terrestris (Wider) (Araneae, Agelenidae). Teil I: Biologie und Ökologie. Teil II: Brutpflege.Z. Morph. Okol. Tiere 49:658–745,50:375–542.Google Scholar
  37. Truswell, E. M., 1993. Vegetation changes in the Australian Tertiary in response to climatic and phytogeographic forcing factors.Australian Systematic Botany 6:533–557.Google Scholar
  38. Uetz, G. W. and C. S. Hieber, 1995. Colonial web-building spiders: balancing the costs and benefits of group-living. In:Social Competition and Cooperation among Insects and Arachnids, II, Evolution of Sociality (J. Choe and B. Crespi, Eds.) Princeton University Press, Princeton, N. J.Google Scholar
  39. Walckanaer, C. A., 1837.Histoire Naturelle des Insectes Aptères. Tome Premier. Paris. Libraire encyclopédique de Roret.Google Scholar
  40. Ward, P. I. and M. M. Enders, 1985. Conflict and cooperation in the group feeding of the social spiderStegodyphus mimosarum.Behaviour 94:167–182.Google Scholar
  41. Williams, G. C., 1966.Adaptation and Natural Selection. Princeton University Press, Princeton, N. J.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • D. M. Rowell
    • 1
  • L. Avilés
    • 2
  1. 1.Division of Botany and ZoologyThe Australian National UniversityCanberraAustralia
  2. 2.Department of Ecology and Evolutionary BiologyUniversity of ArizonaTucsonUSA

Personalised recommendations