Insectes Sociaux

, Volume 42, Issue 3, pp 255–266 | Cite as

Sexual biology of haploid and diploid males in the bumble beeBombus terrestris

  • M. J. Duchateau
  • J. Mariën
Research Articles


InB. terrestris diploid males develop normally into adults (Duchateau et al., 1994). The diploid males are similar in appearance to the haploid males, except that they are smaller. The size of the testis of diploid males, relative to the length of the radial cell, is smaller than that of haploid males. There is overlap in the frequency distribution with respect to body size and testis size. The spermatozoa of diploid males are larger than those of the haploids and the vasa deferentia contain fair less spermatozoa than those of haploid males of the same age. Countings and measurements of the spermatozoa, therefore, can give the best indication about the ploidy of the males. Diploid males are successful in mating. They mate at a younger age than haploid males and they die sooner. The number of vial offspring of diploid males, however, is very low. No queen that mated with a diploid male produced a colony, but a few queens did produce some progeny. These might have been triploid males and workers. InB. terrestris higher ploidy results in smaller individuals, whereas in several other species of the Hymenoptera it has been found to result in larger individuals.

Key words

Bombus terrestris diploid males size spermatozoa mating 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alford, D. V., 1975. Bumblebees. Davis-Poynter, London.Google Scholar
  2. Bostian, C. H., 1936. Fecundity of triploid females inHabrobracon juglandis.Am. Nat. 70:40–41.Google Scholar
  3. Brückner, D., 1976. The influence of genetic variability on wing symmetry in honeybees (Apis mellifera).Evolution 30:100–108.Google Scholar
  4. Camargo, C. A. de, 1982. Longevity of diploid males, haploid males, and workers of the social beeMelipona quadrifasciata.J. Kansas Entomol. Soc. 55:8–12.Google Scholar
  5. Chaud-Netto, J. and W. E. Kerr, 1980. Genetic mechanisms for the development of reproductive organs ofApis mellifera workers and diploid drones: a complementary hypothesis.Braz. J. Gen. 2:127–138.Google Scholar
  6. Duchateau, M. J., 1989. The regulation of colony development in the bumblebee,Bombus terrestris. Ph D Thesis, University of Utrecht, The Netherlands.Google Scholar
  7. Duchateau, M. J., H. Hoshiba and H. H. W. Velthuis, 1994. Diploid males in the bumble beeBombus terrestris: Sex determination, sex alleles and viability.Ent. exp. and appl. 71:269–276.Google Scholar
  8. Eickwort, K. R., 1969. Differential variation of males and females inPolistes exclamans.Evolution 23:391–405.Google Scholar
  9. Garófalo, C. A. and W. E. Kerr, 1975. Sex determination in bees. I. Balance between femaleness and maleness genes inBombus atratus Franklin (Hymenoptera,Apidae).Genetica 45:203–209.Google Scholar
  10. Hung, A. C.F., S. B. Vinson and J. W. Summerlin, 1974. Male sterility in the red imported fire ant,Solenopsis invicta.Ann. Ent. Soc. Am. 67:909–912.Google Scholar
  11. Kukuk, P. F. and B. May, 1990. Diploid males in a primitively eusocial bee,Lasioglossum (Dialictus) zephyrum (Hymenoptera: Halictidae).Evolution 44:1522–1528.Google Scholar
  12. Medler, J. T., 1962. Morphometric studies on bumble bees.Ann. Ent. Soc. Am. 55:212–218.Google Scholar
  13. Naito, T. and H. Suzuki, 1991. Sex determination in the sawfly,Athalia rosae ruficornis (Hymenoptera): Occurrence of triploid males.J. Hered. 82:101–104.Google Scholar
  14. Owen, R. E., 1989. Differential size variation of male and female bumblebees.J. Hered. 80:39–43.Google Scholar
  15. Packer, L. and R. E. Owen, 1990. Allozyme variation, linkage disequilibrium and diploid male production in a primitively social beeAugochlorella striata (Hymenoptera; Halictidae).Heredity 65:241–248.Google Scholar
  16. Periquet, G., M. P. Hedderwick, M. El Agoze and M. Poirié, 1993. Sex determination in the hymenopteranDiadromus pulchellus (Ichneumonidae): validation of the one-locus multiallele model.Heredity 70:420–427.Google Scholar
  17. Petters, R. M. and R. V. Mettus, 1980. Decreased diploid male viability in the parasitic wasp,Bracon hebetor.J. Hered. 71:353–356.Google Scholar
  18. Plowright, R. C. and M. J. Pallett, 1979. Worker-male conflict and inbreeding in bumble bees (Hymenoptera: Apidae).Can. Ent. 111:289–294.Google Scholar
  19. Röseler, P.-F., 1970. Unterschiede in der Kastendetermination zwischen den HummelartenBombus hypnorum undBombus terrestris.Z. Natur wiss. 25b:543–548.Google Scholar
  20. Ross, K. G. and D. J. C. Fletcher, 1985. Genetic origin of male diploidy in the first ant,Solenopsis invicta (Hymenoptera: Formicidae), and its evolutionary significance.Evolution 39:888–903.Google Scholar
  21. Ross, K. G. and D. J. C. Fletcher, 1986. Diploid male production — a significant colony mortality factor in the first antSolenopsis invicta (Hymenoptera: Formicidae).Behav. Ecol. Sociobiol. 19:283–291.Google Scholar
  22. Smith, S. G. and D. R. Wallace, 1971. Allelic sex determination in a lower hymenopteran,Neodiprion nigroscutum Midd.Can. J. Genet. Cytol. 13:617–621.Google Scholar
  23. Sokal, R. R. and C. A. Braumann, 1980. Significance tests for coefficients of variation and variability profiles.Syst. Zool. 29:50–66.Google Scholar
  24. Woyke, J., 1963. Drone larvae from fertilized eggs of the honeybee.J. Apic. Res. 2:19–24.Google Scholar
  25. Woyke, J., 1973. Reproductive organs of haploid and diploid drone honeybees.J. Apic. Res. 12:35–51.Google Scholar
  26. Woyke, J., 1977. Comparative biometrical investigation on diploid drones of the honeybee I. The head.J. Apic. Res. 16:131–142.Google Scholar
  27. Woyke, J., 1978a. Comparative biometric investigation on diploid drones of the honeybee II. The thorax.J. Apic. Res. 17:195–205.Google Scholar
  28. Woyke, J., 1978b. Comparative biometrical investigation drones of the honeybee III. The abdomen, and weight.J. Apic. Res. 17:206–217.Google Scholar
  29. Woyke, J., 1983. Lengths of haploid and diploid spermatozoa of the honeybee and the question of the production of triploid workers.J. Apic. Res. 22:146–149.Google Scholar

Copyright information

© Birkhäuser Verlag 1995

Authors and Affiliations

  • M. J. Duchateau
    • 1
  • J. Mariën
    • 1
  1. 1.Department of Comparative Physiology, Ethology and Socio-Ecology GroupUniversity of UtrechtTB UtrechtThe Netherlands

Personalised recommendations