Lower bounds of the complexity of symmetric boolean functions of contact-rectifier circuits

  • A. A. Razborov


Lower Bound Boolean Function Symmetric Boolean Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. 1.
    P. Pudlak, “The hierarchy of Boolean circuits,” Comput. Art. Intel.,6, No. 5, 449–468 (1987).Google Scholar
  2. 2.
    A. A. Markov, “On minimal contact-rectifier bipolar circuits for monotone symmetric functions,” Probl. Kibern., No. 8, 117–121 (1962).Google Scholar
  3. 3.
    E. I. Nechiporuk, “On a boolean function,” Dokl. Akad. Nauk SSSR,169, No. 4, 765–766 (1966).Google Scholar
  4. 4.
    A. Borodin, D. Dolev, F. E. Fich, and W. Paul, “Bounds for width 2 branching programs,” Proc. 15th ACM STOC (1983), pp. 87–93.Google Scholar
  5. 5.
    A. K. Chandra, M. L. Fürst, and R. J. Lipton, “Multiparty protocols,” Proc. 15th ACM STOC (1983), pp. 94–99.Google Scholar
  6. 6.
    A. C. Yao, “Lower bounds by probabilistic arguments,” Proc. 24th IEEE FOCS (1983), pp. 420–428.Google Scholar
  7. 7.
    P. Pudlak, “A lower bound on complexity of branching programs,” Proc. 11th Symposium on Mathematical Foundations of Computer Science (1984), Lecture Notes in Computer Science (1984), Vol. 176.Google Scholar
  8. 8.
    M. Ajtai, L. Babai, P. Hajnal, J. Komlos, P. Pudlak, V. Rodl, E. Szemeredi, and Gy Turan, “Two lower bounds for branching programs,” Proc. 18th ACM STOC (1986), pp. 30–38.Google Scholar
  9. 9.
    N. Alon and W. M. Maass, “Ramsey theory and lower bounds for branching programs,” Proc. 27th IEEE FOCS (1986), pp. 410–417.Google Scholar
  10. 10.
    L. Babai, P. Pudlak, V. Rodl, and E. Szemeredi, “Lower bounds to the complexity of symmetric Boolean functions,” preprint.Google Scholar
  11. 11.
    M. I. Grinchuk, On the Complexity of Realization of Symmetric Boolean Functions by Contact Circuits [in Russian], Dissertation for the Degree of Candidate in Mathematical Physics, Moscow (1989).Google Scholar
  12. 12.
    A. A. Razborov, “On the method of approximations,” Proc. 21st ACM STOC (1989), pp. 167–176.Google Scholar
  13. 13.
    R. L. Graham, B. L. Rothschild, and J. H. Spencer, Ramsey Theory, New York, Wiley (1980).Google Scholar

Copyright information

© Plenum Publishing Corporation 1991

Authors and Affiliations

  • A. A. Razborov
    • 1
  1. 1.Steklov Institute of MathematicsAcademy of Sciences of the USSRUSSR

Personalised recommendations