Advertisement

Inventiones mathematicae

, Volume 103, Issue 1, pp 547–597 | Cite as

Invariants of 3-manifolds via link polynomials and quantum groups

  • N. Reshetikhin
  • V. G. Turaev
Article

Keywords

Quantum Group Link Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A] Atiyah, M.: On framings of 3-manifolds. (1989) PreprintGoogle Scholar
  2. [A1] Atiyah, M.: Topological quantum field theories. Publ. Math. IHES,68, 175–186 (1989)Google Scholar
  3. [Dr] Drinfeld, V. G.: Quantum groups, Proceedings of the International Congress of Mathematicians. Vol. 1, pp. 798–820. Berkeley: Academic Press 1986Google Scholar
  4. [Dr1] Drinfeld, V. G.: On the almost cocommutative Hopf algebras. Algebra and Analis,1, 30–47 (1989), (in Russian)Google Scholar
  5. [FRT] Faddeev, L., Reshetikhin, N., Takhtajan, L.: Quantization of Lie algebras and Lie groups, Algebra i Analiz i Analiz1, 1 (1989) (in Russian)Google Scholar
  6. [FR] Fenn, R., Rourke, C.: On Kirby's calculus of links. Topology18, 1–15 (1979)Google Scholar
  7. [Ji] Jimbo, M.: Aq-difference analogue ofU(G) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1985)Google Scholar
  8. [Jo] Jones, V. F. R.: Polynomial invariants of knots via non Neumann algebras. Bull. Am. Math. Soc.12, 103–111 (1985)Google Scholar
  9. [Ka] Kac, V. G.: Infinite dimensional Lie algebras. (Progr. Math. vol. 44). Boston: Birkhäuser 1983; 2nd ed., Cambridge University Press, 1985Google Scholar
  10. [KaW] Kac, V. G., Wakimoto, M.: Modular and conformal invariance constraints in representation theory of affine algebras. Adv. Math.40, 1, 156–236 (1988)Google Scholar
  11. [K] Kirby, R.: The calculus of framed links inS 3. Invent. Math.45, 35–56 (1978)Google Scholar
  12. [KiR] Kirillov, A.N., Reshetikhin, N.Yu: Representations of the algebraU q(sl 2),q-orthogonal polynomials and invariants of links. Leningrad: LOMI preprint E-9-88 1988Google Scholar
  13. [KR] Kulish, P.P., Reshetikhin, N.Yu.: Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova101, 101–110 (in Russian) (1981)Google Scholar
  14. [Ki] Kirillov, A.N.: Quantum Clebsh-Gordan coefficients. Zap. Nauchn. Semin. Leningr. Otd. Mat. Inst. Steklova168, 67–84 (1988)Google Scholar
  15. [Lu] Luztig, G.: Quantum deformations of certain simple modules over enveloping algebra 1987 (Preprint)Google Scholar
  16. [L] Lickorish, W.B.R.: A representation of orientable combinatorial 3-manifolds, Ann. Math.76, 531–540 (1962)Google Scholar
  17. [MR] Moore, G., Reshetikhin, N.: A comment on Quantum Group Symmetry in Conformal Field Theory. IAS preprint LASSNS-HEP-89/18Google Scholar
  18. [MS] Moore, G., Seigerg, N.: Classical and quantum conformal field theories. IAS preprint IASSNS-HEP-88/39.Google Scholar
  19. [R] Rolfsen, D.: Knots and links. Boston Publish or Perish Press 1976Google Scholar
  20. [Re] Reshetikhin, N.Yu.: Quantized universal enveloping algebras, the Yang-Baxter equation and invariants of links. I., LOMI Preprint E-4-87, 1988; II. LOMI preprint E-17-87, 1988Google Scholar
  21. [Re1] Reshetikhin, N.Yu.: Quasitriangular Hopf algebras and invariants of links. {jtAlgebra and Analysis}, v. {vn1}, {snN2}, {dy1989}Google Scholar
  22. [ReT] Reshetikhin, N.Yu., Turaev, V.G.: Ribbon graphs and their invariants derived from quantum groups. Commun. Math. Phys.,127, 1–26 (1990)Google Scholar
  23. [RT] Reshetikhin, N.Yu., Turaev, V.G.: Invariants of 3-manifolds via link polynomials and quantum groups. M.S.R.I. (Preprint April 1989)Google Scholar
  24. [Tu] Turaev, V.G.: The Yang-Baxter equation and invariants of links. Invent. Math.92, 527–553 (1988)Google Scholar
  25. [Tu1] Turaev, V.G.: Operator invariants of tangles andR-matrices, Izv. AN SSSR,53, 1073–1107 (in Russian) (1989)Google Scholar
  26. [V] Verlinde, E.: Fusion rules and modular transformations in 2D conformal field theory. Nucl. Physics B300, 360–380 (1988)Google Scholar
  27. [W] Wallace, A.H.: Modifications and cobounding manifolds. Can. J. Math.12, 503–528 (1960)Google Scholar
  28. [Wi] Witten, E.: Quantum field theory and Jones polynomial. Commun. Math. Phys.121 351–399 (1989)Google Scholar
  29. [Wi1] Witten, E.: Gauge Theories and Integrable Lattice Models. IAS IASSNS-HEP-89/11 (Preprint)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • N. Reshetikhin
    • 1
  • V. G. Turaev
    • 2
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA
  2. 2.LOMILeningradUSSR

Personalised recommendations