Inventiones mathematicae

, Volume 103, Issue 1, pp 449–469

Bounding the complexity of simplicial group actions on trees

  • Mladen Bestvina
  • Mark Feighn
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H.: Some remarks on group actions on trees. Comm. Algebra4, 1091–1126 (1976)Google Scholar
  2. 2.
    Bestvina, M., Feighn, M.: A counterexample to generalized accessibility. Proceedings of Arboreal Group Theory Conference, MSRI publications (to appear)Google Scholar
  3. 3.
    Culler, M., Morgan, J.: Group actions on ℝ-trees. Proc. London Math. Soc.55, 571–604 (1987)Google Scholar
  4. 4.
    Dunwoody, M.J.: The accessibility of finitely presented groups. Invent. Math.81, 449–457 (1985)Google Scholar
  5. 5.
    Dunwoody, M.J., Fenn, R.A.: On the finiteness of higher knot sums. Topology26, 337–343 (1987)Google Scholar
  6. 6.
    Grushko, I.: On the bases of a free product of groups. Mat. Sbornik8, 169–182 (1940)Google Scholar
  7. 7.
    Scott, G.P., Wall, C.T.C.: Topological methods in group theory. In: Wall, C.T.C. (ed.) Homological Group Theory London Math. Soc. Lect. Notes36, 137–203 (1979)Google Scholar
  8. 8.
    Serre, J.P.: Trees, Springer Berlin Heidelberg New York 1980Google Scholar
  9. 9.
    Stallings, J.R.: Topology of finite graphs. Invent. Math.71, 551–565 (1983)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Mladen Bestvina
    • 1
  • Mark Feighn
    • 2
  1. 1.Department of MathematicsUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of MathematicsState University of RutgersNewarkUSA

Personalised recommendations