Inventiones mathematicae

, Volume 103, Issue 1, pp 379–415

Description de la correspondance de Howe en termes de classification de Kazhdan-Lusztig

  • A. -M. Aubert
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Références bibliographiques

  1. [Ad] Adams, J.:L-functoriality for dual pairs. Astérisque 171–172Google Scholar
  2. [Au1] Aubert, A.-M.: Conservation de la ramification modérée par la correspondance de Howe. Bull. Soc. Math. Fr.117, 297–303 (1989)Google Scholar
  3. [Au2] Aubert, A.-M.: Correspondance de Howe et sous-groupes parahoriques. J. Reine Angew. Math.392, 176–186 (1988)Google Scholar
  4. [A-H] Aubert, A.-M., Howe, R.: Géométrie des cônes aigus et application à la projection sur la chambre de Weyl positive. J Algebra (à paraître)Google Scholar
  5. [Ba] Barthel, L.: Correspondance de Howe pour les groupes de similitudes. (Prépublication)Google Scholar
  6. [B-Z] Bernstein, J.-N., Zelevinskii, A.V.: Induced representations of reductivep-adic groups I. Ann. Sci. Ec. Norm. Super.10, 441–472 (1977)Google Scholar
  7. [B-W] Borel, A., Wallach, N.: Continuous cohomology, discrete subgroups, and representations of reductive groups. Ann. Math. Stud. 94. Princeton, N.Y.: Princeton University Press 1980Google Scholar
  8. Carmona, J.: Sur la classification des modules admissibles irréductibles, Non commutative harmonic analysis and Lie groups (Lect. Notes Math., vol. 1020) Proceedings Marseille-Luminy Berlin Heidelberg New York: Springer 1982Google Scholar
  9. [K-L] Kazhdan, D., Lusztig, G.: Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math.87, 153–215 (1987)Google Scholar
  10. [K] Kudla, S.: On the local theta-correspondence. Invent. Math.83, 229–255 (1986)Google Scholar
  11. [L1] Lusztig, G.: Some examples of square integrable representations of semi simplep-adic groups. Trans. Am. Math. Soc.277–278, 623–653 (1983)Google Scholar
  12. [L2] Lusztig, G.: Intersection cohomology complexes on a reductive group. Invent. Math.75, 205–272 (1984)Google Scholar
  13. [M] Moeglin, C.: Correspondance de Howe pour les paires réductives duales, quelques calculs dans le cas archimédien. J. Funct. Anal.85 (1989)Google Scholar
  14. [M-V-W] Moeglin, C., Vignéras, M.-F., Waldspurger, J.-L.: Correspondance de Howe sur un corpsp-adique (Lect. Notes Math., vol. 1291) Berlin Heidelberg New York: Springer 1987Google Scholar
  15. [Sp] Springer, T.A.: Linear algebraic groups. Basel Boston: Birkhäuser 1981Google Scholar
  16. [Sp-S] Springer, T.A., Steinberg, R.: Conjugacy classes. In: Seminar on algebraic groups and related finite groups. (Lect. Notes Math., vol. 131) Berlin Heidelberg New York: Springer 1970Google Scholar
  17. [Z] Zelevinskii, A.V.: Induced representations of representations of reductivep-adic groups IV. Ann. Sci. Ec. Norm. Super.13, 165–210 (1980)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • A. -M. Aubert
    • 1
  1. 1.Ecole Normale Supérieure Département de Mathématiques et d'InformatiqueParis Cedex 05France

Personalised recommendations