Advertisement

Inventiones mathematicae

, Volume 103, Issue 1, pp 25–68 | Cite as

The “main conjectures” of iwasawa theory for imaginary quadratic fields

  • Karl Rubin
Article

Keywords

Quadratic Field Main Conjecture Imaginary Quadratic Field Iwasawa Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coates, J.: Infinite descent on elliptic curves with complex multiplication. In: Arithmetic and Geometry, papers dedicated to I.R. Shafarevich on the occasion of his 60th birthday. Prog. Math. vol. 35, pp. 107–136 (1983)Google Scholar
  2. 2.
    Coates, J., Wiles, A.: On the conjecture of Birch and Swinnerton-Dyer. Invent. Math.39, 223–251 (1977)Google Scholar
  3. 3.
    Coates, J., Wiles, A.: Onp-adicL-functions and elliptic units. J. Aust. Math. Soc., Ser.A26, 1–25 (1978)Google Scholar
  4. 4.
    de Shalit, E.: The Iwasawa theory of elliptic curves with complex multiplication. Perspect. Math. vol. 3 (1987)Google Scholar
  5. 5.
    Gillard, R.: Remarques sur les unités cyclotomiques et les unités elliptiques. J. Number Theory11, 21–48 (1979)Google Scholar
  6. 6.
    Gillard, R.: FonctionsL p-adiques des corps quadratiques imaginaires et de leurs extensions abéliennes. J. Reine Angew. Math.358, 76–91 (1986)Google Scholar
  7. 7.
    Greenberg, R.: On the structure of certain Galois groups. Invent. Math.47, 85–99 (1978)Google Scholar
  8. 8.
    Greenberg, R.: On the Birch and Swinnerton-Dyer conjecture. Invent. Math.72, 241–265 (1983)Google Scholar
  9. 9.
    Gross, B.: On the conjecture of Birch and Swinnerton-Dyer for elliptic curves with complex multiplication. In: Number Theory related to Fermat's Last Theorem, Prog. Math. vol. 26, pp. 219–236 (1982)Google Scholar
  10. 10.
    Gross, B., Zagier, D.: Heegner points and derivatives ofL-series. Invent. Math.84, 225–320 (1986)Google Scholar
  11. 11.
    Iwasawa, K.: OnZ 1-extensions of algebraic number fields. Ann. Math.98, 246–326 (1973)Google Scholar
  12. 12.
    Katz, N.:p-adic interpolation of real analytic Eisentein series. Ann. Math.104, 459–571 (1976)Google Scholar
  13. 13.
    Kolyvagin, V.A.: Finiteness ofE(Q) and III (E,Q) for a class of Weil curves. Izv. Akad. Nauk SSSR, Ser Mat.52, 522–540 (1988), (Russian); Math. USSR, Izv.32, 523–542 (1989) (English)Google Scholar
  14. 14.
    Kolyvagin, V.A.: Euler systems. (To appear)Google Scholar
  15. 15.
    Mazur, B.: Rational points of abelian varieties with values in towers of number fields. Invent. Math.18, 183–266 (1972)Google Scholar
  16. 16.
    Mazur, B., Swinnerton-Dyer, P.: Arithmetic of Weil curves. Invent. Math.25, 1–61 (1974)Google Scholar
  17. 17.
    Mazur, B., Wiles, A.: Class fields of abelian extensions ofQ. Invent. Math.76, 179–330 (1984)Google Scholar
  18. 18.
    Monsky, P.: Onp-adic power series. Math. Annalen255, 217–227 (1981)Google Scholar
  19. 19.
    Perrin-Riou, B.: Arithmétique des courbes elliptiques et théorie d'Iwasawa. Bull. Soc. Math. France Suppl., Mémoire17 (1984)Google Scholar
  20. 20.
    Perrin-Riou, B.: Points de Heegner et dérivées de fonctionsL p-adiques. Invent. Math.89, 455–510 (1987)Google Scholar
  21. 21.
    Razar, M.: The nonvanishing ofL(1) for certain elliptic curves with no first descents. Am. J. Math.96, 104–126 (1974)Google Scholar
  22. 22.
    Rubin, K.: Local units, elliptic units, Heegner points and elliptic curves. Invent. Math.88, 405–422 (1987)Google Scholar
  23. 23.
    Rubin, K.: Global units and ideal class groups. Invent. Math.89, 511–526 (1987)Google Scholar
  24. 24.
    Rubin, K.: Tate-Shafarevich groups andL-functions of elliptic curves with complex multiplication. Invent. Math.89, 527–560 (1987)Google Scholar
  25. 25.
    Rubin, K.: On the main conjecture of Iwasawa theory for imaginary quadratic fields. Invent. Math.93, 701–713 (1988)Google Scholar
  26. 26.
    Rubin, K.: The Main Conjecture. Appendix to: Cyclotomic Fields I–II (Second ed.) Lang, S. (Grad. Texts in Math., vol.121, pp. 397–419). Berlin-Heidelberg-New York. Springer 1990Google Scholar
  27. 27.
    Rubin, K.: The one-variable main conjecture for elliptic curves with complex multiplication. To appear in the proceedings of the 1989 Durham conferenceL-functions in Arithmetic. Cambridge: Cambridge University Press (in press)Google Scholar
  28. 28.
    Schneps, L.: On the μ-invariants ofp-adicL-functions attached to elliptic curves with complex multiplication. J. Number Theory25, 20–33 (1987)Google Scholar
  29. 29.
    Shimura, G.: Introduction to the arithmetic theory of automorphic forms. Princeton: Princeton Univ. Press 1971Google Scholar
  30. 30.
    Tate, J.: Algorithm for determining the type of a singular fiber in an elliptic pencil. In: Modular Functions of One Variable (IV) (Lect. Notes in Math., vol.476, pp. 33–52) Berlin-Heidelberg-New York: Springer 1975Google Scholar
  31. 31.
    Thaine, F.: On the ideal class groups of real abelian number fields. Ann. Math.128, 1–18 (1988)Google Scholar
  32. 32.
    Tunnell, J.: A classical diophantine problem and modular forms of weight 3/2. Invent. Math.72, 323–334 (1983)Google Scholar
  33. 33.
    Wiles, A.: Higher explicit reciprocity laws. Ann. Math.107, 235–254 (1978)Google Scholar
  34. 34.
    Wintenberger, J-P.: Structure galoisienne de limites projectives d'unités locales. Comp. Math.42, 89–103 (1981)Google Scholar
  35. 35.
    Yager, R.: On two variablep-adicL-functions. Ann. Math.115, 411–449 (1982)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Karl Rubin
    • 1
  1. 1.Department of MathematicsOhio State UniversityColumbusUSA

Personalised recommendations