Periodic and almost periodic solutions of conservation laws: Global existence and decay

  • Hermano Frid


In this paper we survey recent results on the decay of periodic and almost periodic solutions of conservation laws. We also recall some recent results on the global existence of periodic solutions of conservation laws systems which lie inBVloc and are constructed through Glimm scheme. The latter motivates a discussion on a possible strategy for solving the open problem of the global existence of periodic solutions of the Euler equations for nonisentropic gas dynamics. We base our decay analysis on a general result about space-time functions which are almost periodic in the space variable, established here for the first time. This result is an abstract version of Theorem 2.1 in [31], which in turn is an extention of the combined result given by Theorems 3.1–3.2 in [9].

Key words

conservation laws parabolic equations almost periodic functions 

Mathematical subject classification

Primary 35L65 Secondary 35B35 35B40 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bakhvalov, N.The existence in the large of a regular solution of a quasilinear hyperbolic system, USSR Comp. Math. and Math. Phys.10 (1970), 205–219.Google Scholar
  2. [2]
    Besicovitch, A.S. “Almost Periodic Functions”. Cambridge 1932, 180pp.Google Scholar
  3. [3]
    Besicovitch, A.S. & Bohr, H.Almost periodicity and general trigonometric series, Acta Math.57 (1931), 203–292.Google Scholar
  4. [4]
    Bohr, H.Zur Theorie der fastperiodischen Funktionen I, Acta Math.,45 (1925), 29–127.II, Acta Math.,46 (1925), 101–214.III, Acta Math.,47 (1926), 237–281.Google Scholar
  5. [5]
    Bohr, H. “Almost Periodic Functions”, Chelsea Publishing Company, 1947, 114pp.Google Scholar
  6. [6]
    Bressan, A. & Goatin, P.Stability of L solutions of Temple class systems, Differential and Integral Equations (2000).Google Scholar
  7. [7]
    Chen, G.-Q.Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics III. Acta Mathematica Scientia (English Ed.)6 (1986), no. 2, 75–120.Google Scholar
  8. [8]
    Chen, G.-Q. & Dafermos, C. M.The vanishing viscosity method in one-dimensional thermoelasticity, Trans. Amer. Math. Soc.347 (1995), 531–541.Google Scholar
  9. [9]
    Chen, G.-Q. & Frid, H.Decay of entropy solutions of nonlinear conservation laws, Arch. Rat. Mech. Anal.146 (1999), 95–127.Google Scholar
  10. [10]
    Chen, G.-Q. & Frid, H.Asymptotic decay of solutions of conservation laws, C. R. Acad. Sci. Paris, Série I,323 (1996), 257–262.Google Scholar
  11. [11]
    Chen, G.-Q. & Frid, H.Large-time behavior of entropy solutions of conservation laws, J. Diff. Eqs.152 (1999), 308–357.Google Scholar
  12. [12]
    Chen, G.-Q. & Frid, H.Large-time behavior of entropy solutions in L for multidimensional conservation laws, In: Advances in Nonlinear Partial Differential Equations and Related Areas, pp. 28–44, G.-Q. Chen et al. (eds.), World Scientific: Singapore, 1998.Google Scholar
  13. [13]
    Chen, G.-Q. & Frid, H.Vanishing viscosity limit for initial-boundary value problems for conservation laws, Cont. Math.238 (1999), 35–51.Google Scholar
  14. [14]
    Chen, G.-Q. & Kan, P. T.Hyperbolic conservation laws with umbilic degeneracy I, Arch. Rational Mech. Anal.,130 (1995), 231–276.Google Scholar
  15. [15]
    Chen, G.-Q. & LeFloch, P.Compressible Euler equations with general pressure law, Arch. Rational Mech. Anal.153 (2000), 221–259.Google Scholar
  16. [16]
    Chen, G.-Q., Liu, T.-P.Zero relaxation and dissipation limits for hyperbolic conservation laws, Comm. Pure Appl. Math.,46 (1993), 755–781.Google Scholar
  17. [17]
    Chen, G.-Q., Levermore, C. D. & Liu, T.-P.Hyperbolic systems of conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.,47 (1994), 787–830.Google Scholar
  18. [18]
    Chueh, K.N., Conley, C.C. & Smoller, J.A.Positively invariant regions for systems of nonlinear diffusion equations, Indiana U. Math. J.,26, 2 (1977), 373–392.Google Scholar
  19. [19]
    Colombo, R. & Risebro, N.Continuous dependence in the large for some equations of gas dynamics, Comm. Partial Diff. Eqs.23 Nos.9&10 (1998), 1693–1718.Google Scholar
  20. [20]
    Dafermos, C. M.Large time behavior of periodic solutions of hyperbolic systems of conservation laws, J. Diff. Eqs.,121 (1995), 183–202.Google Scholar
  21. [21]
    Dafermos, C.M. “Hyperbolic Conservation Laws in Continuum Physics”. Springer-Verlag, 1999.Google Scholar
  22. [22]
    Dafermos, C.M.Large time behavior of periodic solutions of hyperbolic systems of conservation laws, J. Diff. Eqs.121 (1995), 183–202.Google Scholar
  23. [23]
    Ding, X., Chen, G.-Q. & Luo, P.Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics (I)–(II) Acta Mathematica Scientia7, (1987), 467–480,8 (1988), 61–94 (in Chinese);5 (1985), 415–432, 433–472.Google Scholar
  24. [24]
    DiPerna, R.Convergence of approximate solutions to conservation laws, Arch. Rational Mech. Anal.82 (1983), 27–70.Google Scholar
  25. [25]
    DiPerna, R.Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys.91 (1983), 1–30.Google Scholar
  26. [26]
    DiPerna, R.J.Global solutions to a class of nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math.26 (1973), 1–28.Google Scholar
  27. [27]
    DiPerna, R.J.Existence in the large for quasilinear hyperbolic conservation laws Arch. Rat. Mech. Anal.52 (1973), 244–257.Google Scholar
  28. [28]
    E, W. & Engquist, B.Large time behavior and homogenization of solutions of two-dimensional conservation laws, Comm. Pure Appl. Math.46 (1993), 1–26.Google Scholar
  29. [29]
    Favard, J. “Leçons sur les Fonctions Presque-Périodiques”, Gauthier-Villars, Editeur, Paris, 1933.Google Scholar
  30. [30]
    Franklin, Ph.Aproximation theorems for generalized almost periodic functions, Math. Zeitschr.,29 (1929), 70–86.Google Scholar
  31. [31]
    Frid, H.Decay of almost periodic solutions of conservation laws, to appear in “Arch. Rational Mech. Anal.”. Preprint available in Scholar
  32. [32]
    Frid, H.Periodic solutions of conservation laws constructed through Glimm scheme, to appear in “Trans. American Math. Soc.”, preprint available in Scholar
  33. [33]
    Frid, H.On the asymptotic behavior of solutions of certain multi-D viscous systems of conservation laws, in: Hyperbolic Problems: Theory, Numerics, Applications. International Series of Numerical Mathematics129 (1999), Birkhäuser, 343–352.Google Scholar
  34. [34]
    Frid, H. & Santos, M. M. The Cauchy problem for the systems\(\partial _t z - \partial _x (\bar z^\gamma ) = 0\), J. Diff. Eqs.111 (1994), 340–359.Google Scholar
  35. [35]
    Frid, H. & Santos, M. M.Nonstrictly hyperbolic systems of conservation laws of the conjugate type. Comm. Partial Diff. Eqs.,19 (1994), 27–59.Google Scholar
  36. [36]
    Friedman, A. Partial Differential Equations of Parabolic Type, Prentice-Hall, 1964.Google Scholar
  37. [37]
    Glimm, J.Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math.18 (1965), 95–105.Google Scholar
  38. [38]
    Glimm, J. & Lax, P. D.Decay of solutions of nonlinear hyperbolic conservation laws, Memoirs Amer. Math. Soc.101 (1970).Google Scholar
  39. [39]
    Hoff, D. & Smoller, J.Global existence for systems of parabolic conservation laws in several space variables, J. Diff. Eqs.68 (1987), 210–220.Google Scholar
  40. [40]
    Hopf, E.The partial differential equation u t +uu x=μu xx, Comm. Pure Appl. Math.,3 (1950), 201–230.Google Scholar
  41. [41]
    James, F., Peng, Y.-J. & Perthame, B.Kinetic formulation for chromatography and some other hyperbolic systems, J. Math. Pures, Appl.74 (1995), 367–385.Google Scholar
  42. [42]
    Kruzkov, S. N.,First-order quasilinear equations in several independent variables, Math. USSR Sb.10 (1970), 217–243.Google Scholar
  43. [43]
    Ladyzenskaja, O.A., Solonnikov, V.A. & Ural'tzeva, N.N. Linear and Quasilinear Equations of Parabolic Type, Transl. Math. Mono,23, AMS, Providence, RI, 1968.Google Scholar
  44. [44]
    Lax, P.D.Hyperbolic systems of conservation laws II, Comm. Pure. Appl. Math.,10 (1957), 537–566.Google Scholar
  45. [45]
    Lions, P.L., Perthame, B. & Tadmor, E.A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.7 (1994), 169–192.Google Scholar
  46. [46]
    Lions, P.L., Perthame, B. & Tadmor, E.Kinetic formulation of the isentropic gas dynamics and p-system, Comm. Math. Phys.163 (1994), 415–431.Google Scholar
  47. [47]
    Lions, P.L., Perthame, B. & Souganidis, P.E.Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates Comm. Pure Appl. Math.49 (1996), 599–634.Google Scholar
  48. [48]
    Murat, F.L'injection du cône positif de H 1 dans W −1,q est compact pour tout q<2, J. Math. Pures Appl.60 (1981) 309–322.Google Scholar
  49. [49]
    Nishida, T.Global solution for an initial boundary value problem of a quasilinear hyperbolic system, Proc. Japan Acad.44 (1968), 642–646.Google Scholar
  50. [50]
    Nishida, T. & Smoller, J.Solutions in the large for nonlinear hyperbolic conservation laws, Comm. Pure Appl. Math.26 (1973), 183–200.Google Scholar
  51. [51]
    Oleinik, O.A.Discontinuous solutions of nonlinear differential equations, Usp. Mat. Nauk. (N.S.),12 (1957), 3–73; English transl. in Amer. Math. Soc. Transl. Ser. 2,26 (1957), 95–172.Google Scholar
  52. [52]
    Riemann, B.Uber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Gött. Abh. Math. Cl.8 (1860), 43–65.Google Scholar
  53. [53]
    Serre, D. “Systèmes de Lois de Conservation I, II” Diderot Editeur Arts et Sciences, Paris, 1996.Google Scholar
  54. [54]
    Serre, D.Relaxations semi-linéaire et cinétique des systèmes de lois de conservation, Ann. Inst. Henri Poincaré, Analyse non linéaire17, 2 (2000), 169–192.Google Scholar
  55. [55]
    Serre, D. & Xiao, L.Asymptotic behavior of large weak entropy solutions of the damped p-system, J. Partial Diff. Eqs.10 (1997), 355–368.Google Scholar
  56. [56]
    Smoller, J. Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1983.Google Scholar
  57. [57]
    Smoller, J. & Temple, B.Global solutions of the relativistic Euler equations, Commun. Math. Phys.156 (1993), 67–99.Google Scholar
  58. [58]
    Stepanoff, W.Über einigen Verallgemeinerungen der fastperiodischen Funktionen, Math. Ann.,95 (1926), 473–498.Google Scholar
  59. [59]
    Tartar, L.Compensated compactness and applications to partial differential equations, In: Research Notes in Mathematics, Nonlinear Analysis and Mechanics ed. R. J. Knops,4 (1979), Pitman Press, New York, 136–211.Google Scholar
  60. [60]
    Tzavaras, A.Materials with internal variables and relaxation to conservation laws, Arch. Rat. Mech. Anal.46 (1999).Google Scholar
  61. [61]
    Volpert, A. I.The space BV and quasilinear equations, Mat. Sb. (N.S.)73 (1967), 255–302, Math. USSR Sbornik2 (1967), 225–267 (in English).Google Scholar
  62. [62]
    Weyl, H.Integralgleichungen und fastperiodiche Funktionen, Math. Ann.,97 (1926–7), 338–356.Google Scholar
  63. [63]
    Wiener, N.On the representation of functions by trigonometrical integrals, Math. Zeitschr.,24 (1925), 576–616.Google Scholar

Copyright information

© Sociedade Brasileira de Matemática 2001

Authors and Affiliations

  • Hermano Frid
    • 1
  1. 1.Instituto de Matemática Pura e Aplicada-IMPARio de JaneiroBrasil

Personalised recommendations