Communications in Mathematical Physics

, Volume 115, Issue 1, pp 127–165

Action-angle maps and scattering theory for some finite-dimensional integrable systems

I. The pure soliton case
  • S. N. M. Ruijsenaars
Article

Abstract

We construct an action-angle transformation for the Calogero-Moser systems with repulsive potentials, and for relativistic generalizations thereof. This map is shown to be closely related to the wave transformations for a large classl of Hamiltonians, and is shown to have remarkable duality properties. All dynamics inl lead to the same scattering transformation, which is obtained explicitly and exhibits a soliton structure. An auxiliary result concerns the spectral asymptotics of matrices of the formM exp(tD) ast→∞. It pertains to diagonal matricesD whose diagonal elements have pairwise different real parts and to matricesM for which certain principal minors are non-zero.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Olshanetsky, M.A., Perelomov, A.M.: Classical integrable finite-dimensional systems related to Lie algebras. Phys. Reps.71, 313–400 (1981)Google Scholar
  2. 2.
    Ruijsenaars, S.N.M., Schneider, H.: A new class of integrable systems and its relation to solitons. Ann. Phys. (NY)170, 370–405 (1986)Google Scholar
  3. 3.
    Ruijsenaars, S.N.M.: Relativistic Calogero-Moser systems and solitons. In: Topics in soliton theory and exactly solvable nonlinear equations. Ablowitz, M., Fuchssteiner, B., Kruskal, M. (eds.), pp. 182–190. Singapore: World Scientific 1987Google Scholar
  4. 4.
    Ruijsenaars, S.N.M.: Action-angle maps and scattering theory for some finite-dimensional integrable systems. II. Solitons, antisolitons, and their bound states (to appear)Google Scholar
  5. 5.
    Airault, H., McKean, H.P., Moser, J.: Rational and elliptic solutions of the Korteweg-de Vries equation and a related many-body problem. Commun. Pure Appl. Math.30, 95–148 (1977)Google Scholar
  6. 6.
    Kazhdan, D., Kostant, B., Sternberg, S.: Hamiltonian group actions and dynamical systems of Calogero type. Commun. Pure Appl. Math.31, 481–507 (1978)Google Scholar
  7. 7.
    Adler, M.: Some finite dimensional integrable systems and their scattering behaviour. Commun. Math. Phys.55, 195–230 (1977)Google Scholar
  8. 8.
    Olshanetsky, M.A., Perelomov, A.M.: Quantum integrable systems related to Lie algebras. Phys. Reps.94, 313–404 (1983)Google Scholar
  9. 9.
    Ruijsenaars, S.N.M.: Complete integrability of relativistic Calogero-Moser systems and elliptic function identities. Commun. Math. Phys.110, 191–213 (1987)Google Scholar
  10. 10.
    Ruijsenaars, S.N.M.: To appearGoogle Scholar
  11. 11.
    Adler, M.: Completely integrable systems and symplectic actions. J. Math. Phys.20, 60–67 (1979)Google Scholar
  12. 12.
    Ruijsenaars, S.N.M.: On one-dimensional integrable quantum systems with infinitely many degrees of freedom. Ann. Phys. (NY)128, 335–362 (1980)Google Scholar
  13. 13.
    Ruijsenaars, S.N.M.: Scattering theory for the Federbush, massless Thirring and continuum Ising models. J. Funct. Anal.48, 135–171 (1982)Google Scholar
  14. 14.
    Ruijsenaars, S.N.M.: Relativistic Toda systems (to appear)Google Scholar
  15. 15.
    Reed, M., Simon, B.: Methods of modern mathematical physics. III. Scattering theory. New York: Academic Press 1979Google Scholar
  16. 16.
    Thirring, W.: Lehrbuch der mathematischen Physik. 1. Klassische dynamische Systeme. Berlin, Heidelberg, New York: Springer 1977Google Scholar
  17. 17.
    Kato, T.: Perturbation theory for linear operators. Berlin, Heidelberg, New York: Springer 1966Google Scholar

Copyright information

© Springer-Verlag 1988

Authors and Affiliations

  • S. N. M. Ruijsenaars
    • 1
  1. 1.Centre for Mathematics and Computer ScienceAmsterdamThe Netherlands

Personalised recommendations