Advertisement

Communications in Mathematical Physics

, Volume 67, Issue 3, pp 205–232 | Cite as

Imperfect bifurcation in the presence of symmetry

  • M. Golubitsky
  • D. Schaeffer
Article

Keywords

Neural Network Statistical Physic Complex System Nonlinear Dynamics Quantum Computing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arnold, V.I.: Local normal forms of functions. Inventiones Math.35, 87–109 (1976)Google Scholar
  2. 2.
    Bauer, L., Keller, H.B., Reiss, E.L.: Multiple eigenvalues lead to secondary bifurcation. SIAM J. Appl. Math.17, 101–122 (1975)Google Scholar
  3. 3.
    Benjamin, T.B.: Bifurcation phenomena in steady flows of a viscous fluid, part I. Report No.76, Fluid Mech. Inst., Univ. of Essex (1976)Google Scholar
  4. 4.
    Chow, S.N., Hale, J.K., Mallet-Paret, J.: Applications of generic bifurcation, I and II. Arch. Rat. Mech. Anal.59, 159–188 (1975);62, 209–235 (1976)Google Scholar
  5. 5.
    Dancer, E.N.: On the existence of bifurcating solutions in the presence of symmetries. Arch. Rat. Mech. Anal. (to appear)Google Scholar
  6. 6.
    Golubitsky, M., Schaeffer, D.: A theory for imperfect bifurcation via singularity theory. Commun. Pure Appl. Math.32, 21–98 (1979)Google Scholar
  7. 7.
    Magnus, R., Poston, T.: On the full unfolding of the von Kármán equations at a double eigenvalue. Math. Report No. 109, Battelle Advanced Studies Center, Geneva (1977)Google Scholar
  8. 8.
    Majumdar, S.: Buckling of a thin annular plate under uniform compression. AIAA J.9, 1701–1707 (1971)Google Scholar
  9. 9.
    Matkowsky, B.J., Reiss, E.L.: Singular perturbations of bifurcations. SIAM J. Appl. Math.33, 230–255 (1977)Google Scholar
  10. 10.
    McLeod, J.B., Sattinger, D.H.: Loss of stability at a double eigenvalue. J. Funct. Anal.14, 62–84 (1973)Google Scholar
  11. 11.
    Poènaru, V.: SingularitésC en présence de symétrie, Lecture notes in mathematics, Vol. 510. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  12. 12.
    Poston, T., Stewart, I.: Catastrophe theory and its applications. San Francisco: Pitman 1978Google Scholar
  13. 13.
    Sattinger, D.H.: Group representation theory and branch points of non-linear functional equations. SIAM J. Math. Anal.8, 179–201 (1977)Google Scholar
  14. 14.
    Sattinger, D.H.: Group representation theory, bifurcation theory, and pattern formation. (To appear)Google Scholar
  15. 15.
    Sattinger, D.H.: Spontaneous symmetry breaking in nonlinear problems. In: Bifurcation theory and applications in Scientific disciplines. (eds. O. Gurel, O. E. Rössler). The New York Academy of Sciences, New York 1979Google Scholar
  16. 16.
    Schaeffer, D., Golubitsky, M.: Bifurcation analysis near a double eigenvalue of a model chemical reaction. Arch. Rat. Mech. Anal. (to appear)Google Scholar
  17. 17.
    Schaeffer, D., Golubitsky, M.: Boundary conditions and mode jumping in the buckling of a rectangular plate. Commun. Math. Phys. (to appear)Google Scholar
  18. 18.
    Schecter, S.: Bifurcations with symmetry. In: The Hopf bifurcation and its applications. Marsden, J.E., McCracken, M. (eds.). Appl. Math. Sci., Vol. 19, pp. 224–249. Berlin, Heidelberg, New York: Springer 1976Google Scholar
  19. 19.
    Schwarz, G.: Smooth functions invariant under the action of a compact Lie group. Topology14, 63–68 (1975)Google Scholar
  20. 20.
    Thompson, J.M.T., Hunt, G.W.: A general theory of elastic stability. London: Wiley 1973Google Scholar
  21. 21.
    Thompson, J.M.T.: Catastrophe theory and its role in applied mechanics. In: Theoretical and applied mechanics. Koiter, W.T. (ed.), pp. 451–458. Amsterdam, Oxford, New York: North-Holland 1976Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • M. Golubitsky
    • 1
  • D. Schaeffer
    • 2
  1. 1.Department of MathematicsArizona State UniversityTempeUSA
  2. 2.Department of MathematicsDuke UniversityDurhamUSA

Personalised recommendations