Transformation Groups

, Volume 4, Issue 4, pp 355–374

Coordinates on Schubert cells, Kostant's harmonic forms, and the Bruhat Poisson structure onG/B

  • Jiang-Hua Lu


For the flag manifoldX=G/B of a complex semi-simple Lie groupG, we make connections between the Kostant harmonic forms onG/B and the geometry of the Bruhat Poisson structure. We show that on each Schubert cell, the corresponding Kostant harmonic form can be described using only data coming from the Bruhat Poisson structure. We do this by using an explicit set of coordinates on the Schubert cell.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B] J.-L. Brylinski,A differential complex for Poisson manifolds, J. Diff. Geom.28 (1988), 93–114.Google Scholar
  2. [B-Z] J.-L. Brylinski and G. Zuckerman,The outer derivation of a complex Poisson manifold, J. Reine Angew. Math.506 (1999), 181–189.Google Scholar
  3. [E-L] S. Evens, and J.-H. Lu,Poisson harmonic forms, Kostant harmonic forms, and the S 1-equivariant cohomology of K/T, Adv. Math.142 (1999), 171–220.Google Scholar
  4. [E-L-W] S. Evens, J.-H. Lu and A. Weinstein,Transverse measures, the modular class, and a cohomology pairing for Lie algebroid cohomology, to appear in Quat. J. Math. Also available as dg-ga/9610008.Google Scholar
  5. [Hg] S. Helgason,Groups and Geometric Analysis, Academic Press, 1984.Google Scholar
  6. [Hp] J. E. Humphreys,Reflection Groups and Coxeter Groups, Cambridge University Press, 1990.Google Scholar
  7. [J] J. Jantzen,Representations of Algebraic Groups, Academic Press, 1987.Google Scholar
  8. [K] B. Kostant,Lie algebra cohomology and generalized Schubert cells, Ann. of Math.77 (1) (1963), 72–144.Google Scholar
  9. [K-K] B. Kostant and S. Kumar,The nil Hecke ring and cohomology of G/P for a Kac-Moody group G, Adv. Math.62 (1986) No. 3, 187–237.Google Scholar
  10. [Ko] J.-L. Koszul,Crochet de Schouten-Nijenhuis et cohomologie, Astérisque, hors série, (1985), 257–271.Google Scholar
  11. [L-W] J.-H. Lu and A. Weinstein,Poisson Lie groups, dressing transformations, and Bruhat decompositions, J. Diff. Geom.31 (1990), 501–526.Google Scholar
  12. [P] D. Pickrell,On the metric geometry of Schubert varieties, University of Arizona preprint, 1988.Google Scholar
  13. [STS] M. A. Semenov-Tian-Shansky,Dressing transformations and Poisson Lie group actions, Publ. RIMS, Kyoto University21 (1985), 1237–1260.Google Scholar
  14. [S] Я. С. Сойбельман,Алгебра функций на компактной квантовой группе и ее прегставления, Алгебра и Анализ2 (1) (1990), 190–212. English translation: Y. Soibelman,The algebra of functions on a compact quantum group, and its representations, St. Petersburg Math. J.2 (1) (1991), 161–178.Google Scholar
  15. [W1] A. Weinstein,The local structure of Poisson manifolds, J. Diff. Geom.18 (1983), 523–557.Google Scholar
  16. [W2] A. Weinstein,The modular automorphism group of a Poisson manifold, J. Geom. Phys.23 (1997), 379–394.Google Scholar

Copyright information

© Birkhäuser Boston 1999

Authors and Affiliations

  • Jiang-Hua Lu
    • 1
  1. 1.Department of MathematicsUniversity of ArizonaTucsonUSA

Personalised recommendations