Transformation Groups

, Volume 4, Issue 4, pp 329–353 | Cite as

The size of a hyperbolic Coxeter simplex

  • N. W. Johnson
  • R. Kellerhals
  • J. G. Ratcliffe
  • S. T. Tschantz
Article

Abstract

We determine the covolumes of all hyperbolic Coxeter simplex reflection groups. These groups exist up to dimension 9. the volume computations involve several different methods according to the parity of dimension, subgroup relations and arithmeticity properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B]
    L. Bianchi,Sui gruppi di sostituzioni lineari con coefficienti appartenenti a corpi quadratici immaginari, Math. Ann.40 (1892), 332–412.Google Scholar
  2. [Bo]
    A. Borel,Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci.8 (1981), 1–33.Google Scholar
  3. [Bou]
    ]N. Bourbaki,Éléments de máthématique. Fasc. XXXIV. Chapitres IV, V et VI: Groupes de Coxeter et systèmes de Tits. Groupes engendrés par des reflexions. Systèmes derracines, Hermann, Paris, 1968. Russian translation: Н. Бурбаки,Брунны и алчебры Ли. Брунны Коксмера и сисмемы Тимса. Брунны, норожденные омражениями. Сисмеми коней, М., Мир, 1972.Google Scholar
  4. [C]
    M. Chein,Recherche des graphes des matrices de Coxeter hyperboliques d'ordre ≤10, Rev. Française Informat. Rech. Opération3 (1969), 3–16.Google Scholar
  5. [C1]
    H. S. M. Coxeter,Discrete groups generated by reflections, Ann. Math.35 (1934), 588–621.Google Scholar
  6. [C2]
    H. S. M. Coxeter,The functions of Schläfli and Lobatschevsky, Quart. J. Math. (Oxford)6 (1935), 13–29.Google Scholar
  7. [CW]
    H. S. M. Coxeter, G. J. Whitrow,World-structure and non-Euclidean honeycombs, Proc. Royal Soc. LondonA201 (1950), 417–437.Google Scholar
  8. [D]
    H.E. Debrunner,Dissecting orthoschemes into orthoschemes, Geom. Dedicata33 (1990), 123–152.Google Scholar
  9. [G]
    З.Б. Винберг (ред.),Геомемрия-2, Итоги науки и техн. Цоврем. пробл. матем. Фунд. направл., т. 29, ВИНИТИ, Моцква, 1988. English translation: E. B. Vinberg (ed.),Geometry, II, Encyclopaedia of Math. Sciences, vol. 29, Springer-Verlag, Berlin-Heidelberg-New York, 1993.Google Scholar
  10. [JW]
    N. W. Johnson, A. I. Weiss,Quadratic integers and Coxeter groups, Canad. J. Math.51 (1999), to appear.Google Scholar
  11. [K1]
    R. Kellerhals,On the volume of hyperbolic polyhedra, Math. Ann.285 (1989), 541–569.Google Scholar
  12. [K2]
    R. Kellerhals,On Schläfli's reduction formula, Math. Z.206 (1991), 193–210.Google Scholar
  13. [K3]
    R. Kellerhals,On volumes of hyperbolic 5-orthoschemes and the trilogarithm, Comment. Math. Helv.67 (1992), 648–663.Google Scholar
  14. [K4]
    R. Kellerhals,On volumes of non-Euclidean polytopes, in Polytopes: Abstract, Convex and Computational (T. Bisztriczky et al., ed.); vol. 440, Kluwer, Dordrecht, 1994, pp. 231–239.Google Scholar
  15. [K5]
    R. Kellerhals,Volumes in hyperbolic 5-space, Geom. Funct. Anal.5 (1995), 640–667.Google Scholar
  16. [K6]
    J.-L. Koszul,Lectures on Hyperbolic Coxeter Groups, Notes by T. Ochiai, Univ. of Notre Dame, Notre Dame, IN. (1968).Google Scholar
  17. [L]
    F. Lannér,On complexes with transitive groups of automorphisms, Medd. Lunds Univ. Mat. Sem.11 (1950), 1–71.Google Scholar
  18. [Le]
    L. Lewin,Polylogarithms and Associated Functions, North Holland, 1981.Google Scholar
  19. [Lo]
    Н. И. Лобачевский,Примененение еооб⌕ажаемой γеомемрии к иекоморым инмеγралам, Лолн. собр. собр. соч., М.-Л., том3, 1949, 18–294. German translation: N. I. Lobatschefskij,Imaginäre Geometrie und ihre Anwendung auf einige Integrale, Deutsche Übersetzung von H. Liebmann. Teubner, Leipzig, 1904.Google Scholar
  20. [MR]
    C. Maclachlan, A. W. Reid,The arithmetic structure of tetrahedral groups of hyperbolic isometries, Mathematika36 (1989), 221–240.Google Scholar
  21. [M]
    R. Meyerhoff,A lower bound for the volume of hyperbolic 3-orbifolds, Duke Math. J.57, (1988), 185–203.Google Scholar
  22. [R]
    J. G. Ratcliffe,Foundations of Hyperbolic Manifolds, Graduate Texts in Math., vol. 149, Springer-Verlag, New York-Berlin-Heidelberg, 1994.Google Scholar
  23. [RT]
    J. G. Ratcliffe, S. T. Tschantz,Volumes of integral congruence hyperbolic manifolds, J. Reine Angew. Math.488 (1997), 55–78.Google Scholar
  24. [Sa]
    C. H. Sah,Scissors congruences, I,the Gauss-Bonnet map, Math. Scand.49 (1981), 181–210.Google Scholar
  25. [S]
    L. Schläfli,Die Theorie der vielfachen Kontinuität, in Gesammelte Mathematische Abhandlungen, vol. 1, Birkhäuser, 1950.Google Scholar
  26. [Si1]
    C. L. Siegel,Über die analytische Theorie der quadratischen Formen, Ann. Math.36 (1935), 527–606.Google Scholar
  27. [Si2]
    C. L. Siegel,Über die analytische Theorie der quadratischen Formen, II, Ann. Math.37 (1936), 230–263.Google Scholar
  28. [V]
    Э. Б. Винберг,Дискремиые Sруииы, иоржденные омражениями е иросмрансмеах Лобачевскоγо, Мат. Сборник72 (1967), 471–488. English translation: E. B. Vinberg,Discrete groups generated by reflections in Lobacevskii spaces, Math. USSR-Sbornik1 (1967), 429-444.Google Scholar
  29. [W]
    E. Witt,Spiegelungsgruppen und Aufzählung halbeinfacher Liescher Ringe, Abh. Math. Sem. Univ. Hamburg14 (1941), 289–322.Google Scholar

Copyright information

© Birkhäuser Boston 1999

Authors and Affiliations

  • N. W. Johnson
    • 1
  • R. Kellerhals
    • 2
  • J. G. Ratcliffe
    • 3
  • S. T. Tschantz
    • 3
  1. 1.Department of Mathematics and Computer ScienceWheaton CollegeNortonUSA
  2. 2.Mathematisches InstitutUniversität GöttingenGöttingenGermany
  3. 3.Department of MathematicsVanderbilt UniversityNashvilleUSA

Personalised recommendations