Archiv der Mathematik

, Volume 32, Issue 1, pp 38–54 | Cite as

Values of the IwasawaL-functions at the points=1

  • Pilar Báyer
Article

Bibliography

  1. [1]
    P. Báyer andJ. Neukirch, On values of zeta functions andl-adic Euler characteristics Invent. Math.50, 35–64 (1978).Google Scholar
  2. [2]
    A.Brumer, Travaux récents d'Iwasawa et de Leopoldt. Sém. Bourbaki 1966/67. Exp. 325.Google Scholar
  3. [3]
    A. Brumer, On the units of algebraic number fields. Mathematika14, 121–124 (1967).Google Scholar
  4. [4]
    J. Coates,p-adicL-functions and Iwasawa's Theory. In: Algebraic number fields:L-functions and Galois properties. Proc. Sympos., Univ. Durham, Durham, 1975, pp. 269–353. London-New York-San Francisco. 1977.Google Scholar
  5. [5]
    B.Ferrero and L. C.Washington, The Iwasawa invariantμ pvanishes for abelian number fields (to appear).Google Scholar
  6. [6]
    R. Greenberg, Onp-adicL-functions and cyclotomic fields, II. Nagoya Math. J.67, 139–158 (1977).Google Scholar
  7. [7]
    J. Herbrand, Sur les classes des corps circulaires. J. Math. Pures et Appliquées, 9e série11, 417–441 (1932).Google Scholar
  8. [8]
    K.Iwasawa, Lectures onp-adicL-functions. Annals of Math. Studies, n∘74. Princeton, New Jersey 1972.Google Scholar
  9. [9]
    K. Iwasawa, On ℤl-extensions of algebraic number fields. Ann. of Math.98, 246–326 (1973).Google Scholar
  10. [10]
    S.Lang, Algebraic Number Theory. London 1968.Google Scholar
  11. [11]
    H. W.Leopoldt, Über Einheitengruppe und Klassenzahl reeller abelscher Zahlkörper. Abh. Dt. Akad. Wissensch., Math. Nat. Kl., No.2 (1953).Google Scholar
  12. [12]
    H. W. Leopoldt, Über die Hauptordnung der ganzen Elemente eines abelschen Zahlkörpers. J. Keine Angew. Math.201, 113–118 (1959).Google Scholar
  13. [13]
    J. P.Seere, Corps locaux. Paris 1968.Google Scholar
  14. [14]
    L. C. Washington, A note onp-adicL-functions. J. Number Theory8, 245–250 (1976).Google Scholar

Copyright information

© Birkhäuser Verlag 1979

Authors and Affiliations

  • Pilar Báyer
    • 1
  1. 1.Fachbereich Mathematik der Universität RegensburgRegensburg

Personalised recommendations