Advertisement

Communications in Mathematical Physics

, Volume 122, Issue 3, pp 455–526 | Cite as

S1 actions and elliptic genera

  • Clifford Henry Taubes
Article

Abstract

A proof is given of Witten's conjectures for the rigidity of the index of the Dirac-Ramond operator on the loop space of a spin manifold which admits anS1 symmetry.

Keywords

Neural Network Manifold Statistical Physic Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-B]
    Atiyah, M.F., Bott, R.: The Lefschetz fixed point theorem for elliptic complexes I. Ann. Math.86, 374 (1967). The Lefschetz fixed point theorem for elliptic complexes II. Ann Math.88, 451 (1968)Google Scholar
  2. [A-B-S]
    Atiyah, M.F., Bott, R., Shapiro, A.: Clifford modules. Topology3, 3 (1964)Google Scholar
  3. [A-H]
    Atiyah, M.F., Hirzebruch, F.: Spin manifolds and group actions. In: Essays in topology and related subjects. Berlin, Heidelberg, New York: Springer 1970Google Scholar
  4. [A-Se]
    Atiyah, M.F., Segal, G.: The index of elliptic operators II. Ann. Math.87, 531 (1968)Google Scholar
  5. [A-Si]
    Atiyah, M.F., Singer, I.M.: The index of elliptic operators I. Ann. Math.87, 484 (1968)Google Scholar
  6. [B-T]
    Bott, R., Taubes, C.H.: On the rigidity theorems of Witten. J. Am. Math. Soc. (to appear)Google Scholar
  7. [E]
    Edmonds, A.L.: Orientability of fixed point sets. Proc. Am. Math. Soc.82, 120 (1981)Google Scholar
  8. [F-U]
    Freed, D., Uhlenbeck, K.K.: Instantons and 4-manifolds. Berlin, Heidelberg, New York: Springer 1984Google Scholar
  9. [L-S]
    Landweber, P.S., Stong, R.E.: Circle actions on spin manifolds and characteristic numbers. (to appear in Topology)Google Scholar
  10. [M-S]
    Milnor, J., Stasheff, J.: Characteristic classes. Princeton, NJ: Princeton University Press 1974Google Scholar
  11. [O1]
    Ochanine, S.: Genres elliptiques equivariants. In: Elliptic curves and modular forms in algebraic topology. P. S. Landweber (ed.). Lecture Notes in Mathematics, vol. 1326, p. 107. Berlin, Heidelberg, New York: Springer 1988Google Scholar
  12. [O2]
    Unpublished notes (1985), and Princeton lecture, September 1986Google Scholar
  13. [Wh]
    Whitehead, G.: Elemements of homotopy theory. Berlin, Heidelberg, New York: Springer 1978Google Scholar
  14. [W1]
    Witten, E.: Fermion quantum numbers in Kaluza-Klein theory. In: Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Foundations of Physics. Khuri, N. et al. (eds.). Cambridge MA: MIT Press 1985Google Scholar
  15. [W2]
    Witten, E. Elliptic genera and quantum field theory. Commun. Math. Phys.109, 525 (1987)Google Scholar
  16. [W3]
    Witten, E.: The index of the Dirac operator in loop space. In: Elliptic curves and modular forms in algebraic topology. Landweber, P.S. (ed.). Lecture Notes in Mathematics, vol. 1326, p. 161. Berlin, Heidelberg, New York: Springer 1988Google Scholar

Copyright information

© Springer-Verlag 1989

Authors and Affiliations

  • Clifford Henry Taubes
    • 1
  1. 1.Department of MathematicsHarvard UniversityCambridgeUSA

Personalised recommendations