Advertisement

Constructive Approximation

, Volume 8, Issue 2, pp 141–159 | Cite as

On optimal recovery of a holomorphic function in the unit ball of Cn

  • K. Y. Osipenko
  • M. I. Stessin
Article

Abstract

Some problems of optimal recovery in the Hardy and Bergman spaces in the unit ball ofC n are solved. In particular, some variants of the Schwartz Lemma follow.

AMS classification

30C80 30E10 

Key words and phrases

Hardy space Bergman space Optimal recovery Unit ball ofCn 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. D. Fisher, C. A. Micchelli (1980):The n-width of sets of analytic functions. Duke Math. J.,47:789–801.Google Scholar
  2. 2.
    S. Ya. Khavinson (1985): Two Papers on Extremal Problems in Complex Analysis. Amer. Math. Soc. Translations Ser. 2, No. 129.Google Scholar
  3. 3.
    C. A. Micchelli, T. J. Rivlin (1977):A survey of optimal recovery. In: Optimal Estimation in Approximation Theory. Proc. Internat. Sympos., Freudenstadt, 1976 (C. A. Micchelli, T. J. Rivlin, eds.). New York: Plenum Press, pp. 1–54.Google Scholar
  4. 4.
    C. A. Micchelli, T. J. Rivlin (1980): Lectures on Optimal Recovery. Lecture Notes in Mathematics, No. 1129, pp. 21–93.Google Scholar
  5. 5.
    K. Yu. Osipenko (1976):Best approximation of analytic functions from information on their values at a finite number of points. English Transl. in Math. Notes. Mat. Zametki19:29–40.Google Scholar
  6. 6.
    K. Yu. Osipenko, M. I. Stessin (1991):On recovery problems in the Hardy and Bergman spaces. Mat. Zametki,49(4):95–104 (Russian).Google Scholar
  7. 7.
    W. Rudin (1980): Function Theory in the Unit Ball ofC n. New York: Springer-Verlag.Google Scholar
  8. 8.
    J. F. Traub, H. Wozniakowski (1980). A General Theory of Optimal Algorithms. New York: Academic Press.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1992

Authors and Affiliations

  • K. Y. Osipenko
    • 1
  • M. I. Stessin
    • 2
  1. 1.Department of MathematicsMoscow Institute of Aviation TechMoscowUSSR
  2. 2.Department of MathematicsNorthwestern UniversityEvanstonUSA

Personalised recommendations