Advertisement

Evolutionary Ecology

, Volume 8, Issue 4, pp 438–454 | Cite as

Comparative ecology of sexual and asexual gecko species (Lepidodactylus) in French Polynesia

  • Kathryn A. Hanley
  • Douglas T. Bolger
  • Ted J. Case
Article

Summary

The asexual geckoLepidodactylus lugubris, its sexual congenerL. sp. (Takapoto) and hybrids between the two species inhabit the atoll of Takapoto, providing a natural experiment for studying co-existence and interactions between asexual and sexual populations. The range of the sexual species is confined to one section of the lagoon beach and the trees and buildings which abut it, whereas the asexual is distributed across the whole atoll and occupies many habitats. Behavioural experiments revealed no asymmetry in levels of aggression between the two species, suggesting that the confinement ofL. sp. (Takapoto) to the lagoon beach is not due to agonistic interactions. Ecological differences among the constituent clones of the asexual species exist but cannot completely account for the broader habitat use of the asexual. Within a single habitat, one clone ofL. lugubris consumes a wider range of prey items than its sexual relative. Other studies have found that the asexuals are extremely heterozygous relative to the sexuals; we hypothesize that their broad ecological tolerance may be attributable to heterosis. The co-existence of the sexual and parthenogenetic lizards on this small island seems to be stable and may be facilitated by the specialization of the sexual taxon to beach habitats.

Keywords

gecko parthenogen sex Lepidodactylus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bell, G. (1982)The Masterpiece of Nature. University of California Press, Berkeley, CA.Google Scholar
  2. Bolger, D.T. and Case, T.J. (1992) Intra-specific and inter-specific interference behavior among sexual and asexual geckos.Anim. Behav. 44, 21–30.Google Scholar
  3. Bolger, D.T. and Case, T.J. (in press) Divergent thermal ecology of sympatric clones of the asexual gecko,Lepidodactylus lugubris oecologia. Google Scholar
  4. Borror, D.J. and White, R.E. (1970)Peterson Field Guides: Insects. Houghton Mifflin Co., Boston.Google Scholar
  5. Bulger, A.J. and Schultz, R.J. (1979) Heterosis and interclonal variation in thermal tolerance in unisexual fishes.Evolution 33, 848–59.Google Scholar
  6. Case, T.J., Bolger, D.T. and Petren, K. (1984) Invasions and competitive displacement among house geckos in the Tropical Pacific.Ecology 75(2), 464–78.Google Scholar
  7. Case, T.J. (1990) Patterns of coexistence in sexual and asexual species ofCnemidophorus lizards.Oecologia 83, 220–7.Google Scholar
  8. Case, T.J. and Bender, E.A. (1981) Is recombination advantageous in fluctuating and heterogeneous environments?J. Theor. Biol. 90, 181–90PubMedGoogle Scholar
  9. Case, T.J. and Taper, M.L. (1986) On the coexistence and coevolution of asexual and sexual predators.Evolution 40, 366–87.Google Scholar
  10. Chao, L. (1990) Fitness of RNA virus decreased by Muller's Ratchet.Nature 348, 454–5.PubMedGoogle Scholar
  11. Cuellar, O. (1984) Histocompatibility in Hawaiian and Polynesian populations of the parthenogenetic geckoLepidodactylus lugubris.Evolution 38, 176–85.Google Scholar
  12. Cuellar, O. (1977) Animal parthenogenesis.Science 197, 837–43.PubMedGoogle Scholar
  13. Dawley, R.M. and Bogart, J.P. (1989)Evolution and Ecology of Unisexual Vertebrates. Bulletin 466, New York State Museum, Albany, NY.Google Scholar
  14. Dessauer, H.C. and Cole, C.J. (1989) Diversity between and within nominal forms of unisexual teiid lizards. InEvolution and ecology of unisexual vertebrates (R. M. Dawley and J.P. Bogart, eds), pp. 49–71. Bulletin 466, New York State Museum, Albany, NY.Google Scholar
  15. Dye, T. and Steadman, D.W. (1990) Polynesian ancestors and their animal world.Am. Sci. 78, 207–15.Google Scholar
  16. Glesener, R.R. and Tilman, D. (1978) Sexuality and the components of environmental uncertainty: clues from geographic parthenogenesis in terrestrial animals.Am. Nat. 112, 659–73.Google Scholar
  17. Hamilton, W.D., Axelrod, R. and Tanese, R. (1990) Sexual reproduction as an adaptation to parasites (a review).Proc. Natl Acad. Sci. USA 87, 3566–73.PubMedGoogle Scholar
  18. Hanley, K.A., Fisher, R.N. and Case, T.J. (in press) Higher mite infestations in sexual geckos than their asexual congeners.Evolution. Google Scholar
  19. Ineich, I. (1988) Mise en evidence d'un complexe unisexue-bisexue chez le geckoLepidodactylus lugubris (Sauria, Lacertilia) en Polynesie Francaise.CR Acad. Sci, Paris 307, 271–7.Google Scholar
  20. Ineich, I. (1992) La parthenogenese chez les Gekkonidae (Reptilia, Lacertilia): origine et evolution.Bull. Soc. Zool. Fr. 117, 253–66.Google Scholar
  21. Ineich, I. and Ota, H. (1992) Additional remarks on the unisexual—bisexual complex of the geckoLepidodactylus lugubris in Takapoto Atoll, French Polynesia.Bull. Coll. Sci. Univ. Ryukyus 53, 31–9.Google Scholar
  22. Leahy, C. (1987)Peterson First Guide to the Insects of North America. Houghton Mifflin Co., Boston.Google Scholar
  23. Leuck, B.E. (1985) Comparative social behavior of bisexual and unisexual whiptail lizards (Cnemidophorus).J. Herpetol. 19, 492–506.Google Scholar
  24. Levins, R. (1968)Evolution in Changing Environments: Some Theoretical Explorations. Princeton University Press, Princeton, NJ.Google Scholar
  25. Lynch, M. (1984) Destabilizing hybridization, general purpose genotypes and geographic parthenogenesis.Q. Rev. Biol. 59, 257–90.Google Scholar
  26. Morisita, M. (1959) Measuring interspecific association and similarity between communities.Mem. Fac. Sci. Kyushu Univ. Ser. E. (Biol) 3, 65–80.Google Scholar
  27. Moritz, C. (1991) The origin and evolution of parthenogenesis inHeteronotia binoei (Gekkonidae): evidence for recent and localized origins of widespread clones.Genetics 129, 211–19.PubMedGoogle Scholar
  28. Moritz, C., Brown, W.W., Densmore, L.D., Wright, J.W., Vyas, D., Donellan, S., Adams, M. and Baverstock, P. (1989) Genetic diversity and the dynamics of hybrid parthenogenesis inCnemidophorus (Teiidae) andHeteronotia (Gekkonidae). InEvolution and ecology of unisexual vertebrates (R.M. Dawley and J.P. Bogart, eds), pp. 87–112. Bulletin 466, New York State Museum, Albany, NY.Google Scholar
  29. Moritz, C., McCallum, H., Donellan, S. and Roberts, J.D. (1991) Parasite loads in parthenogenetic and sexual lizards (Heteronotia binoei): support for the Red Queen hypothesis.Proc. R. Soc. Lond. B. 244, 145–9.Google Scholar
  30. Moritz, C., Case, T.J., Bolger, D.T. and Donellan, S. (1993) Genetic diversity and the history of the Pacific island house geckos (Hemidactylus andLepidodactylus).Biol. J. Linn. Soc. 48, 113–33.Google Scholar
  31. Muller, H.J. (1964) The relation of recombination to mutational advance.Mutat. Res. 1, 2–9.Google Scholar
  32. Parker, E.D., Jr (1979) Ecological implications of clonal diversity in parthenogenetic morphospecies.Am. Zool. 19, 753–62.Google Scholar
  33. Parker, E.D., Jr and Selander, R.K. (1976) The organization of genetic diversity in the parthenogenetic lizardCnemidophorus tesselatus.Genetics 84, 791–805PubMedGoogle Scholar
  34. Pasteur, G., Agnese, J.F., Blanc, C.P. and Pasteur, V. (1987) Polyclony and low relative heterozygosity in a widespread unisexual vertebrate,Lepidodactylus lugubris (Sauria).Genetica 75, 71–9Google Scholar
  35. Paulissen, M. A., Walker, J. M. and Cordes, J. E. (1992) Can parthenogeneticCnemidophorus laredoensis (Teiidae) coexist with its bisexual congeners?J. Herp. 26, 153–8.Google Scholar
  36. Pianka, E.R. (1973) The structure of lizard communities.Annu. Rev. Ecol. Syst. 4, 53–74Google Scholar
  37. Ryti, R.L. and Case, T.J. (1986) Spatial arrangement and diet overlap between colonies of desert ants.Oecologia 62, 401–4.Google Scholar
  38. Saint Girons, H. and Ineich, I. (1992) Histology of the reproductive tract of hybrids between gonochoristic males and parthenogenetic females ofLepidodactylus lugubris in French Polynesia (Reptilia: Gekkonidae).J. Morphol. 212, 55–64.PubMedGoogle Scholar
  39. Schenck, R.A. and Vrijenhoek, R.C. (1986) Spatial and temporal factors affecting coexistence among sexual and clonal forms ofPoeciliopsis.Evolution 40, 1060–70.Google Scholar
  40. Shultz, R.J. (1977) Evolution and ecology of unisexual fishes.Evol. Biol. 10, 277–331.Google Scholar
  41. Van Valen, L. (1973) A new evolutionary law.Evol. Theor. 1, 1–30.Google Scholar
  42. Vandel, A. (1928) La parthenogenese geographique. Contribution a l'etude biologique et cytologique de la parthenogenese naturelle.Bull. Biol. France Belg. 62, 164–281.Google Scholar
  43. Volobouev, V., Pasteur, G., Ineich, I. and Dutrillaux, B. (1993) Chromosomal evidence for hybrid origin of diploid parthenogenetic females from the unisexual — bisexualLepidodactylus lugubris complex (Reptilia, Gekkonidae).Cytogenet. Cell Genet. 63, 194–9.PubMedGoogle Scholar
  44. Vrijenhoek, R.C. (1984) Ecological differentiation among clones: the frozen niche variation model. InPopulation biology and evolution (K. Wohrmann and V. Loeschke, eds), pp. 217–31. Springer-Verlag, Berlin.Google Scholar
  45. Walls, J.G. (1982)Encyclopedia of Marine Invertebrates. T. F. H. Publications, Neptune, NJ.Google Scholar
  46. Wright, J.W. and Lowe, C.H. (1967) Hybridization in nature between parthenogenetic and bisexual species of whiptail lizards (genusCnemidophorus).Am. Mus. Novitates 2286, 1–36.Google Scholar
  47. Zar, J.H. (1984)Biostatistical Analysis. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  48. Zug, G.R. (1992)The Lizards of Fiji: Natural History and Systematics. Bernice Bishop Museum Press, Honolulu, Hawaii.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Kathryn A. Hanley
  • Douglas T. Bolger
    • 2
  • Ted J. Case
    • 1
  1. 1.Department of Biology-0116University of California at San DiegoLa JollaUSA
  2. 2.Environmental Studies ProgramDartmouth CollegeHanoverUSA

Personalised recommendations