Evolutionary Ecology

, Volume 10, Issue 5, pp 545–558

The evolution of phage lysis timing

  • Ing-Nang Wang
  • Daniel E. Dykhuizen
  • Lawrence B. Slobodkin


The effect of host quantity and host quality on the evolution of phage lysis timing is analysed using marginal value theorem of optimal foraging theory. Both factors have been shown to strongly influence the latent period. A high host density selects for short latent period, which is the same result as previous investigators have found. A good host quality also promotes a short latent period. However, elasticity analysis shows that these two factors exert their influences under different sets of conditions. When host density is low, the host density is more important in determining the length of latent period, whereas when host density is high, the host quality is more important.


lysis timing phage optimal foraging theory marginal value theorem MVT 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abedon, S. T. (1989) Selection for bacteriophage latent period length by bacterial density: a theoretical examination.Microbiol. Ecol. 18 79–88.Google Scholar
  2. Ackermann, H. -W. and DuBow, M. S. (1987)Viruses of Prokaryotes, Vol. I. CRC Press, Inc., Boca Raton, FL.Google Scholar
  3. Adams, M. H. (1959)Bacteriophages. Interscience Publishers, Inc., New York, NY.Google Scholar
  4. Benzer, S. (1953) Induced synthesis of enzymes in bacteria analyzed at the cellular level.Biochim. Biophys. Acta. 11 383–95.Google Scholar
  5. Charnov, E. L. (1976) Optimal foraging, the marginal value theorem.Theor. Pop. Biol. 9 129–36.Google Scholar
  6. Charnov, E. L. and Skinner, S. W. (1984) Evolution of host selection and clutch size in parasitoid wasps.Florida Entomol. 67 5–21.Google Scholar
  7. Charnov, E. L. and Parker, G. A. (1995) Dimensionless invariants from foraging theory's marginal value theorem.Proc. Natl Acad. Sci. USA 92 1446–50.Google Scholar
  8. Delbrück, M. (1940) Adsorption and bacteriophage under various physiological conditions of the host.J. Gen. Physiol. 23 631–42.Google Scholar
  9. Ellis, E. L. and Delbrück, M. (1939) The growth of bacteriophage.J. Gen. Physiol. 23, 365–84.Google Scholar
  10. Hershey, A. D. (1953) Nucleic acid economy in bacteria infected with bacteriophage T2. II. Phage precursor nucleic acid.J. Gen. Physiol. 37 1–23.Google Scholar
  11. Hutchison, C. A. and Sinsheimer, R. L. (1966) The process of infection with bacteriophage øX174. X. Mutations in a øX174 lysis gene.J. Mol. Biol. 18 429–47.Google Scholar
  12. Ingraham, J. L., Maaløe, O. and Neidhardt, F. C. (1983)Growth of the Bacterial Cell. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  13. Josslin, R. (1970) The lysis mechanism of phage T4: mutants affecting lysis.Virology 40 719–26.Google Scholar
  14. Levin, B. R. and Lenski, R. E. (1983) Coevolution in bacteria and their viruses and plasmids. InCoevolution (D.J. Futuyma and M. Slatkin, eds), pp. 99–127. Sinauer Associates, Inc., Sunderland, MA.Google Scholar
  15. Levin, B. R. and Lenski, R. E. (1985) Bacteria and phage: a model system for the study of the ecology and co-evolution of hosts and parasites. InEcology and Genetics of Host—Parasite Interactions (D. Rollinson and R. M. Anderson, eds), pp. 227–242. Academic Press, London.Google Scholar
  16. Levin, B. R., Stewart, F. M. and Chao, L. (1977) Resource-limited growth, competition, and predation: a model and experimental studies with bacteria and bacteriophage.Am. Nat. 111 3–24.Google Scholar
  17. Parker, G. A. and Stuart, R. A. (1976) Animal behavior as a strategy optimizer: evolution of resource assessment strategies and optimal emigration thresholds.Am. Nat. 110 1055–76.Google Scholar
  18. Skinner, S. W. (1985) Clutch size as an optimal foraging problem for insects.Behav. Ecol. Sociobiol. 17 231–8.Google Scholar
  19. Stearns, S. C. (1992)The Evolution of Life Histories. Oxford University Press, Oxford.Google Scholar
  20. Stephens, D. W. and Krebs, J. R. (1986)Foraging Theory. Princeton University Press, Princeton, NJ.Google Scholar
  21. Stewart, F. M. and Levin, B. R. (1984) The population biology of bacterial viruses: why be temperate.Theor. Pop. Biol. 26 93–117.Google Scholar
  22. Young, R. (1992) Bacteriophage lysis: mechanism and regulation.Microbiol. Rev. 56 430–81.Google Scholar

Copyright information

© Chapman & Hall 1996

Authors and Affiliations

  • Ing-Nang Wang
    • 1
  • Daniel E. Dykhuizen
    • 1
  • Lawrence B. Slobodkin
    • 1
  1. 1.Department of Ecology and EvolutionState University of New York at Stony BrookStony BrookUSA

Personalised recommendations