Advertisement

Evolutionary Ecology

, Volume 8, Issue 6, pp 639–657 | Cite as

The evolution of flightlessness: Is history important?

  • Derek A. Roff
Article

Summary

Though most birds and insects are capable of flight (‘volant’) some species are flightless. In this paper I test the hypothesis that phylogenetic constraints have played a role in the evolution of flightlessness. If speciation occurred after the evolutionary transition to flightlessness, inferences concerning the importance of particular aspects of the environment on the probability of the evolution of flightlessness may be statistically spurious because of the inflation of the sample size. Among birds, ratites and penguins illustrate the phenomenon of considerable speciation subsequent to the transition to the evolution of flightlessness. In contrast, the rails represent a group in which each flightless species probably represents a separate evolutionary transition. There are many more flightless insect species than bird species and several orders are monomorphically flightless, the sometimes enormous speciation within the order following and possibly being a consequence of the evolution of flightlessness. While it can be shown in insects that flightlessness has evolved independently many times, there are at least as many cases in which the question cannot be resolved. Therefore, in both birds and insects phylogenetic effects should not be ignored, for the number of evolutionary transitions may be much less than the number of species. The effect of incorporating phylogenetic (or at least taxonomic) constraints into the analysis of habitat factors associated with flightlessness is considered.

Keywords

flightlessness wing dimorphism phylogeny evolution birds insects constraints 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnett, R.H. (1985)American Insects. Van Nostrand Reinhold, New York.Google Scholar
  2. Aubert, J. (1945) Le micropterisme chez les Plectopteres (Perlaries).Rev. Suisse de Zool. Geneve 52, 395–9.Google Scholar
  3. Barbosa, P. and Krischik, V. (1989) Life-history traits of forest-inhabiting flightless Lepidoptera.Am. Midl. Nat. 122, 262–74.Google Scholar
  4. Barnard, K.H. (1934) South African stone-flies (Perlaria), with descriptions of new species.Ann. S. African Museum 30, 511–48.Google Scholar
  5. Bengtson, S. (1984) Breeding ecology and extinction of the great auk (Pinguinus impennis): anecdotal evidence and conjectures.Auk 101, 1–12.Google Scholar
  6. Blatchley, W.S. (1920)Orthoptera of Northeastern America with Special Reference to the Faunas of Indiana and Florida. Nature, Indianapolis, IN.Google Scholar
  7. Bledsoe, A.H. (1988) A phylogenetic analysis of postcranial skeletal characters of the ratite birds.Ann. Carnegie Mus. 57, 73–90.Google Scholar
  8. Brinck, P. (1949) Studies on Swedish stoneflies (Pecoptera).Opusc. Entomol. Suppl. 11, 1–250.Google Scholar
  9. Byers, G.W. (1965) The Mecoptera of Indo-China.Pacific Insects 7, 705–48.Google Scholar
  10. Byers, G.W. (1966) Mecoptera from Borneo and Tioman Island.Pacific Insects 8, 885–92.Google Scholar
  11. Carlquist, S. (1965)Island Life. Natural History Press, New York.Google Scholar
  12. Carver, M., Gross, G.F. and Woodward, T.E. (1991) Hemiptera. InThe insects of Australia, Vol. 1, pp. 429–509. Cornell University Press, Ithaca, NY.Google Scholar
  13. Chopard, L. (1949) Ordre des Dictyopteres. InTraite de zoologie (P.-P. Grassé, ed.) pp. 355–407. Masson, Paris.Google Scholar
  14. Cooper, A., Mourer-Chauvire, C., Chambers, G.K., von Haeseler, A., Wilson, A.C. and Paabo, S. (1992) Independent origins of New Zealand moas and kiwis.Proc. Natl Acad. Sci. USA,89, 8741–4.PubMedGoogle Scholar
  15. Cracraft, J. (1974) Phylogeny and evolution of the ratite birds.Ibis 116, 494–521.Google Scholar
  16. Darlington, P.J., Jr (1943) Carabidae of mountains and islands: data on the evolution of isolated faunas, and on atrophy of wings.Ecol. Monogr. 13, 38–61.Google Scholar
  17. Davis, C. (1938) Studies in Australian Embioptera. Part III. Revision of the genusMetoligotoma with description of new species, and other species, and other notes on the family Oligotomidae.Proc. Linn. Soc. New South Wales 63, 226–72.Google Scholar
  18. Davis, C. (1940a) Studies in Australian Embioptera. Part IV. Supplementary taxonomic notes.Proc. Linn. Soc. New South Wales 65, 155–60.Google Scholar
  19. Davis, C. (1940b) Taxonomic notes on the order Embioptera. XV. The genusRhagodichin Enderlein, and genera convergent to it.Proc. Linn. Soc. New South Wales 65, 171–91.Google Scholar
  20. Davis, C. (1940c) Taxonomic notes on the order Embioptera. XVI-XVII. XVI. The genusEmbia Latreille. XVII. A new neotropical genus previously confused withEmbia Latreille.Proc. Linn. Soc. New South Wales 65, 323–53.Google Scholar
  21. Davis, C. (1940d) Taxonomic notes on the order Embioptera. XVIII. The genusOligotoma Westwood.Proc. Linn. Soc. New South Wales 65, 362–87.Google Scholar
  22. Davis, C. (1940e) Taxonomic notes on the order Embioptera. XIX. Genera not previously discussed.Proc. Linn. Soc. New South Wales 65, 525–32.Google Scholar
  23. Davis, C. (1942) Studies in Australian Embioptera. Part V. Geographical variation inMetoligotoma reducta.Proc. Linn. Soc. New South Wales 67, 331–34.Google Scholar
  24. Davis, C. (1943) Studies in Australian Embioptera. Part VI. Records of the genusMetoligotoma from Victoria.Proc. Linn. Soc. New South Wales 68, 65–6.Google Scholar
  25. Davis, C. (1944) Studies in Australian Embioptera. VII. New Embioptera from tropical Australia.Proc. Linn. Soc. New South Wales 69, 16–20.Google Scholar
  26. Denno, R.F., Roderick, G.K., Olmstead, K.L. and Dobel, H.G. (1991) Density-related migration in planthoppers (Homoptera: Delphacidae): the role of habitat persistence.Am. Nat. 138, 1513–41.Google Scholar
  27. Edmunds, M. (1992) Flightlessness in insects.Tree 7, 421.Google Scholar
  28. Feduccia, A. (1980)The Age of Birds. Harvard University Press, Cambridge.Google Scholar
  29. Greenewalt, C.H. (1975) The flight of birds.Trans. Am. Phil. Soc. (New Ser.) 65, 1–67.Google Scholar
  30. Greenway, J.C., Jr (1967)Extinct and Vanishing Birds of the World. Dover, New York.Google Scholar
  31. Hackman, W. (1964) On reduction and loss of wings in Diptera.Notul. Entomol. 44, 73–93.Google Scholar
  32. Hackman, W. (1966) On wing reduction and loss of wings in Lepidoptera.Notul. Entomol. 46, 1–16.Google Scholar
  33. Hammond, P.M. (1985) Dimorphism of wings, wing-folding and wing-toiletry devices in the ladybird,Rhyzobius litura (F.) (Coleoptera: Coccinellidae), with a discussion of interpopulation variation in this and other wing-dimorphic beetles species.Biol. J. Linn. Soc. 24, 15–33.Google Scholar
  34. Harvey, P.H. and Pagel, M.D. (1991)The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
  35. Hashimoto, H. (1962) Ecological significance of the sexual dimorphism in marine chironomids.Sci. Rep. Tokyo Kyoiku Daigaku Sect. B 157, 221–52.Google Scholar
  36. Hebard, M. (1917) The Blattidae of North America north of the Mexican Boundary.Mem. Am. Entomol. Soc. 2, 1–284.Google Scholar
  37. Hebard, M. (1922) Mexican records of Blattidae (Orthoptera).Trans. Am. Entomol. Soc. 47, 199–220.Google Scholar
  38. Hebard, M. (1926) The Blattidae of French Guiana.Proc. Acad. Natl Sci. Philadelphia 78, 135–244.Google Scholar
  39. Hincks, W.D. (1959)A Systematic Monograph of the Dermaptera of the World. Part One. British Museum (Natural History), London.Google Scholar
  40. Hood, J.D. (1954) Brazilian Thysanoptera. IV.Proc. Biol. Soc. Washington,67, 17–54.Google Scholar
  41. Hood, J.D. (1957) New Brazilian Thysanoptera.Proc. Biol. Soc. Washington 70, 129–80.Google Scholar
  42. Hubbell, T. and Norton, R.M. (1978) The systematic biology of the cave-crickets of the North American tribe Hadenoecini (Orthoptera Saltatoria: Ensifera: Rhaphidopophoridae: Dolichopodinae).Misc. Pub. Mus. Zool., Univ. Michigan 156, 1–124.Google Scholar
  43. Humphrey, P.S. and Livezey B. C. (1982) Flightlessness in flying steamer-ducks.Auk 99, 368–72.Google Scholar
  44. Hynes, H.B.N. (1941) The taxonomy and ecology of the nymphs of British Plecoptera with notes on the adults and eggs.Trans. Roy. Ent. Soc. London 91, 459–557.Google Scholar
  45. Juliano, S.A. (1983) Body size, dispersal ability, and range size in North American species of Brachinus (Coleoptera: Carabidae).Coleopterists Bull. 37, 232–8.Google Scholar
  46. Kawai, T. (1967)Fauna Japonica. Plecoptera. Tokyo Electrical Engineering College Press, Tokyo.Google Scholar
  47. Kearns, C.W. (1934) Method of wing inheritance inCephalonomia gallicola Ashmead (Bethylidae: Hymenoptera).Ann. Entomol. Soc. America,27, 533–41.Google Scholar
  48. Key, K.H.L. (1991) Phasmatodea.In The Insects of Australia, Vol. 1 (CSIRO, ed.) pp. 394–404. Cornell University Press, Ithaca, NY.Google Scholar
  49. Kimmins, D.E. (1938) Notes on the Plecoptera of New Zealand, with descriptions of new species.Ann. Mag. Nat. Hist. Ser. 112, 561–80.Google Scholar
  50. Kristensen, N.P. (1991) Phylogeny of extant hexapods. InThe Insects of Australia, Vol. 1 (CSIRO, ed.) pp. 125–40. Cornell University Press, Ithaca, NY.Google Scholar
  51. Lambers, D.H.R. (1966) Polymorphism in the Aphididae.Ann. Rev. Entomol. 11, 47–78.Google Scholar
  52. Liebherr, J.K. (1986) Comparison of genetic variation in two carabid beetles (Coleoptera) of differing vagility.Ann. Entomol. Soc. America 79, 424–33.Google Scholar
  53. Liebherr, J.K. (1988) Gene flow in ground beetles (Coleoptera: Carabidae) of differing habitat preference and flight-wing development.Evolution 42, 129–37.Google Scholar
  54. Livezey, B.C. (1986) Phylogeny and historical biogeography of steamer-ducks (Antidae:Tachyeres).Syst. Zool. 35, 458–69.Google Scholar
  55. Livezey, B.C. (1988) Morphometrics of flightlessness in the Alcidae.Auk 105, 681–98.Google Scholar
  56. Livezey, B.C. (1989a) Morphometric patterns in Recent and fossil penguins (Aves, Sphenisciformes).J. Zool., London 219, 269–307.Google Scholar
  57. Livezey, B.C. (1989b) Flightlessness in grebes (Aves, Podicipedidae): its independent evolution in three genera.Evolution 43, 29–54.Google Scholar
  58. Livezey, B.C. (1990) Evolutionary morphology of flightlessness in the Auckland Islands teal.Condor 92, 639–73.Google Scholar
  59. Livezey, B.C. (1992a) Flightlessness in the Galápagos cormorant (Compsohalieus [Nannopterum] harrisi): heterochrony, giantism and specialization.Zool. J. Linn. Soc. 105, 155–224.Google Scholar
  60. Livezey, B.C. (1992b) Morphological corrollaries and ecological implications of flightlessness in the kakapo (Psittaciformes:Strigops habroptilus).J. Morphol. 213, 105–45.Google Scholar
  61. Livezey, B.C. (1993a) An ecomorphological review of the dodo (Raphus cucullatus) and solitaire (Pezophaps solitaria), flightless Columbriformes of the Mascarene Islands.J. Zool. London 230, 247–92.Google Scholar
  62. Livezey, B.C. (1993b) Morphology of flightlessness inChendytes, fossil seaducks (Anatidae: Mergini) of coastal California.J. Vert. Paleont. 13, 185–99.Google Scholar
  63. Livezey, B.C. and Humphrey, P.S. (1983) Mechanics of steaming in steamer-ducks.Auk 100, 485–8.Google Scholar
  64. Livezey, B.C. and Humphrey, P.S. (1986) Flightlessness in steamer-ducks (Anatidae: Tachyeres): its morphological bases and probable evolution.Evolution 40, 540–58.Google Scholar
  65. Livezey, B.C. and Humphrey, P.S. (1992) Taxonomy and identification of steamer-ducks (Anatidae:Tachyeres).Univ. Kansas Mus. Nat. Hist. Mon. 8, 1–125.Google Scholar
  66. May, R.M. (1993) Which were the real New Zealanders?Curr. Biol. 3, 36–7.PubMedGoogle Scholar
  67. Meinander, M. (1972) A revision of the family Coniopterygidae (Planipennia).Acta Zool. Fenn. 136, 1–357.Google Scholar
  68. Mockford, E.L. (1965) Polymorphism in the Psocoptera: a review.Proc. North Central Branch — ESA 20, 82–6.Google Scholar
  69. Morejohn, G.V. (1976) Evidence of the survival to Recent times of the extinct flightless duckChendytes lawi Miller.Smiths. Contr. Paleobiol. 27, 207–11.Google Scholar
  70. Needham, J.G. and Claasen, P.W. (1925) A monograph of the Plecoptera or stoneflies of America north of Mexico.Thomas Say Found., Entomol. Soc. America. 2, 1–397.Google Scholar
  71. Olson, S.L. (1973) Evolution of the rails of the South Atlantic Islands (Aves: Rallidae).Smiths. Contrib. Zool. 152, 1–53.Google Scholar
  72. Olson, S.L. and James H.F. (1991) Descriptions of thirty-two new species of birds from the Hawaiian Islands. Part I. Non-passeriformes.Ornithol. Monogr. 45, 1–88.Google Scholar
  73. Otte, D. (1979) Biogeographic patterns in flight capacity of Nearctic grasshoppers (Orthoptera: Acrididae).Entomol News 90, 153–8.Google Scholar
  74. Otte, D. (1981)The North American Grasshoppers, Vol. 1. Harvard University Press, Cambridge, MA.Google Scholar
  75. Otte, D. (1984)The North American Grasshoppers, Vol. 2. Harvard University Press, Cambridge, MA.Google Scholar
  76. Preziosi, R.F. and Fairbairn D.J. (1992) Genetic populations structure and levels of gene flow in the stream dwelling watterstrider,Aquarius (=Gerris)remigis (Hemiptera: Gerridae).Evolution 46, 430–44.Google Scholar
  77. Raikow, R.J. (1985) Locomotor system. InForm and Function in birds, Vol. 3 (A.S. King and J. McLelland, eds), pp. 57–147. Academic Press, London.Google Scholar
  78. Rehn, J.A.G. (1932) African and Malagasy Blattidae (Orthoptera), part II.Proc. Acad. Natl Sci. Philadelphia 84, 405–511.Google Scholar
  79. Rehn, J.A.G. (1937) African and Malagasy Blattidae (Orthoptera), part III.Proc. Acad. Natl Sci. Philadelphia 89, 17–123.Google Scholar
  80. Reid, J.A. (1941) The thorax of the wingless and short-winged Hymenoptera.Trans. R. Entomol. Soc. London 91, 367–446.Google Scholar
  81. Riek, E.F. (1970) Neuroptera Trichoptera. InThe insects of Australia Hymenoptera. (CSIRO ed.) pp. 472–94, 741–64, 867–959. Melbourne University Press, Melbourne Australia.Google Scholar
  82. Ripley, S.D. (1977)Rails of the World. Godine, Boston.Google Scholar
  83. Roff, D.A. (1986) The evolution of wing dimorphism in insects.Evolution 40, 1009–20.Google Scholar
  84. Roff, D.A. (1990a) The evolution of flightlessness in insects.Ecol. Monogr. 60, 389–421.Google Scholar
  85. Roff, D.A. (1990b) Understanding the evolution of insect life cycles: the role of genetical analysis.In Genetics, evolution and coordination of insect life cycles (F. Gilbert, ed.) pp. 5–27. Springer-Verlag, New York.Google Scholar
  86. Roff, D.A. (1992)The Evolution of Life Histories: Theory and Analysis. Chapman & Hall, New York.Google Scholar
  87. Roff, D.A. and Bentzen, P. (1989) The statistical analysis of mitochondrial DNA polymorphisms:X 2 and the problem of small samples.Mol. Biol. Evol. 6, 539–45.PubMedGoogle Scholar
  88. Roff, D.A. and Fairbairn, D.J. (1991) Wing dimorphisms and the evolution of migratory polymorphisms among the Insecta.Am. Zool. 31, 243–51.Google Scholar
  89. Ross, E.S. (1940) Revision of the Embioptera of North America.Ann. Entomol. Soc. America 33, 629–76.Google Scholar
  90. Ross, E.S. (1944) A revision of the Embioptera, or webspinners of the New World.Proc. US Nat. Mus. 94, 401–504.Google Scholar
  91. Ross, E.S. (1948) The Embioptera of New Giunea.Pan-Pacific Entomol. 24, 97–116.Google Scholar
  92. Ross, E.S. (1966) The Embioptera of Europe and the Mediterranean region.Bull. Br. Mus. (Nat. Hist.), Ent. 17, 273–326.Google Scholar
  93. Ross, H.H. (1967) The evolution and past dispersal of the Trichoptera.Ann. Rev. Ent. 12, 169–206.Google Scholar
  94. Ross, H.H. and Ricker, W.E. (1971) The classification, evolution, and dispersal of the winter stonefly genusAllocapnia.Illinois Biol. Monogr. 45, 1–163.Google Scholar
  95. Salt, G. (1952) Trimorphism in the Ichneumonid parasiteGelis corruptor.Q. J. Microbiol. Sci. 93, 453–74.Google Scholar
  96. Sattler, K. (1991) A review of wing reduction in Lepidoptera.Bull. Br. Mus. Nat. Hist. (Entomol.) 60, 243–88.Google Scholar
  97. Sibley, C.G. and Monroe, B.L., Jr (1990)Distribution and Taxonomy of Birds of the World. Yale University Press, Yale.Google Scholar
  98. Southwood, T.R.E. and Leston, D. (1959)Land and Water Bugs of the British Isles. Frederick Warne, London.Google Scholar
  99. Stannard, L.J. (1968) The thrips, or Thysanoptera of Illinois.Bull. Illinois Nat. Hist. Surv. 29, 214–552.Google Scholar
  100. Thayer, M.K. (1992) Discovery of sexual wing dimorphism in Staphylinidae (Coleoptera): ‘Omaliumflavidum, and a discussion of wing dimorphism in insects.J. NY Entomol. Soc. 100 540–73.Google Scholar
  101. Tillyard, R.J. (1923) The stone-flies of New Zealand (order Perlaria), with descriptions of new genera and species.Google Scholar
  102. Vickery, V.R. and Kevan, D.K. McE. (1983) A monograph of the orthopteroid insects of Canada and adjacent regions. Volumes 1 and 2.Lyman Ent. Mus. Res. Lib. Mem. 13, 1–1467.Google Scholar
  103. Weller, M.W. (1975) Ecological studies of the Auckland Islands flightless teal.Auk 92, 280–97.Google Scholar
  104. Yager, D.D. (1990) Sexual dimorphism of auditory function in praying mantises (Mantodea, Dictyoptera).J. Zool., London 221, 517–37.Google Scholar
  105. Zaykin, D.V. and Pudovkin, A.I. (1993) Two programs to estimate Chi-square values using pseudoprobability test.J. Hered. 84, 152.Google Scholar
  106. Zwick, P. (1979) Revision of the stonefly family Eusteniidae (Plecoptera), with emphasis on the fauna of the Australian region.Aquat. Insects 1, 17–50.Google Scholar

Copyright information

© Chapman & Hall 1994

Authors and Affiliations

  • Derek A. Roff
    • 1
  1. 1.Department of BiologyMcGill UniversityMontrealCanda

Personalised recommendations