Evolutionary Ecology

, Volume 7, Issue 3, pp 287–305 | Cite as

Metaphysiological and evolutionary dynamics of populations exploiting constant and interactive resources:R—K selection revisited

  • Wayne M. Getz
Article

Summary

I begin by reviewing the derivation of continuous logistic growth and dynamic consumer—resource interaction equations in terms of specific resource extraction and biomass conversion functions that are considered to hold at a population level. Evolutionary stable strategy (ESS) methods are discussed for analysing populations modelled by these equations. The question of selection trade-offs is then considered, particularly in the context of populations being efficient at extracting resources versus converting resources to their own biomass. Questions relating to single populations with high versus low conversion rates and interacting populations with high versus low self-interference rates are also considered. The models discussed here demonstrate conclusively that self-interference is an essential part of any consumption process: without it population growth and interaction processes do not make any sense. The analysis clarifies concepts relating to the somewhat discredited notion ofr—K selection.

Keywords

evolutionary dynamics populations interactive resources 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akçakaya, H. R. (1992) The population cycles of mammals: evidence for a ratio-dependent predation hypothesis.Ecol. Monogr. 62 119–42.Google Scholar
  2. Arditi, R. and Ginzburg, L. R. (1989) Coupling in prey—predator dynamics: ratio dependence.J. Theor. Biol. 139, 311–26.Google Scholar
  3. Arditi, R. and Saïah, H. (1992) Empirical evidence of the role of heterogeneity in ratio-dependent consumption.Ecology 73, 1544–51.Google Scholar
  4. Bazzaz, F. A. and Pickett, S. T. A. (1980) Physiological ecology of tropical succession: a comparative review.Ann. Rev. Ecol. Syst. 11, 287–310.Google Scholar
  5. Bergh, M. O. and Getz, W. M. (1989) Stability and harvesting of competing population with genetic variation in life history strategies.Theor. Pop. Biol. 36, 77–124.Google Scholar
  6. Berryman, A. A. (1992) The origins and evolution of prey-predator theory.Ecology 73, 1530–5.Google Scholar
  7. Brown, J. S. and Vincent, T. L. (1987) A theory for the evolutionary game.Theor. Pop. Biol. 31, 140–66.Google Scholar
  8. DeAngelis, D. L., Goldstein, R. A. and O'Neill, R. V. (1975) A model for trophic interaction.Ecology 56, 881–92.Google Scholar
  9. Emlen, J. M. (1984)Population Biology: The Coevolution of Population Dynamics and Behavior, p. 547. Macmillan, NY, USA.Google Scholar
  10. Getz, W. M. (1984) Population dynamics: a resource per capita approach.J. Theor. Biol. 108, 623–44.Google Scholar
  11. Getz, W. M. (1991) A unified approach to multispecies modeling.Nat. Res. Model. 5, 393–421.Google Scholar
  12. Getz, W. M. (1993) Beyond Lotka—Volterra—Gause—Holling and MacArthur—Tilman models. InLecture Notes in Biomathematics, (S. A. Levin, ed.), Vol. 100. Springer-Verlag, NY, USA (in press).Google Scholar
  13. Getz, W. M. and Kaitala, V. (1993) Ecogenetic analysis and evolutionary stable strategies in harvested populations. InManagement of Evolving Resources, (R. Stokes, R. Law and J. MacGlade, eds). Springer-Verlag, NY, USA.Google Scholar
  14. Ginzburg, L. R. (1986) The theory of population dynamics: I. Back to first principles.J. Theor. Biol. 122, 385–99.Google Scholar
  15. Ginzburg, L. R. and Akçakaya, H. R. (1992) Consequences of ratio-dependent predation for steady-state properties of ecosystems.Ecology 73, 1536–43.Google Scholar
  16. Ginzburg, L. R., Goldman, Y. I. and Railkin, A. I. (1972) A mathematical model of interaction between two populationsZh.Obshch. Biol. 33, 450–5.Google Scholar
  17. Gutierrez, A. P. (1992) Physiological basis of ratio-dependent prey—predator theory: the metabolic pool model as a paradigm.Ecology 73, 1552–63.Google Scholar
  18. Gutierrez, A. P., Baumgaertner, J. U. and Hagen, K. S. (1981) A conceptual model for growth, development, and reproduction in the ladybird beetleHippodamia convergences G.-M. (Coccinellidae: Coleoptera).Can. Entomol. 113, 21–33.Google Scholar
  19. Hall, C. A. S. (1988) An assessment of several of the historically most influential theoretical models used in ecology and the data provided for their support.Ecol. Model. 43, 5–31.Google Scholar
  20. Hanski, I. (1991) The functional response of predators: worries about scale.TREE 6, 141–2.Google Scholar
  21. Holling, C. S. (1959) Some characteristics of simple types of predation and parasitism.Can. Entomol. 91, 385–98.Google Scholar
  22. Horn, H. S. and Rubenstein, D. I. (1984) Behavioral adaptations and life history. InBehavioral Ecology: An Evolutionary Approach (J. R. Krebs and N. B. Davies, eds), 2nd edn, pp. 279–98. Sinauer Associates, Sunderland, MA, USA.Google Scholar
  23. MacArthur, R. H. (1962) Some generalized theorems on natural selection.Proc. Natl Acad. Sci. USA 48, 1893–7.Google Scholar
  24. MacArthur, R. H. (1972)Geographical Ecology: Patterns in the Distribution of Species. Harper and Row, NY, USA.Google Scholar
  25. MacArthur, R. H. and Wilson, E. O. (1967)The Theory of Island Biogeography. Princeton University Press, Princeton, NJ, USA.Google Scholar
  26. May, R. M. (1981) Models of two interacting populations. InTheoretical Ecology, 2nd ed, pp. 78–104. Sinauer Associates, Sunderland, MA, USA.Google Scholar
  27. Maynard Smith, J. (1982)Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK.Google Scholar
  28. Maynard Smith, J. (1989)Evolutionary Genetics, p. 325. Oxford University Press, Oxford, UK.Google Scholar
  29. Maynard Smith, J. and Price, G. R. (1973) The logic of animal conflict.Nature 246, 15–8.Google Scholar
  30. McLain, D. E. (1991) Ther—K continuum and the relative effectiveness of sexual selection.Oikos 60, 263–5.Google Scholar
  31. Pearl, R. and Reed, L. J. (1927) On the rate of growth of the population of the United States since 1790 and its mathematical representation.Proc. Natl Acad. Sci. USA 6, 275–88.Google Scholar
  32. Pianka, E. R. (1970) Onr- andK-selection.Am. Nat. 104, 592–7.Google Scholar
  33. Pitcairn, M. J., Getz, W. M. and Williams, D. W. (1990) Resource availability and parasitoid abundance in the analysis of host-parasite data.Ecology 71, 2372–4.Google Scholar
  34. Rosenzweig, M. L. (1973) Exploitation in three tropic levels.Am. Nat. 107, 275–94.Google Scholar
  35. Rosenzweig, M. L. (1977) Aspects of biological exploitation.Q. Rev. Biol. 52, 371–80.Google Scholar
  36. Rosenzweig, M. L. and MacArthur, R. H. (1963) Graphical representation and stability conditions of predator—prey interactions.Am. Nat. 97, 209–23.Google Scholar
  37. Roughgarden, J. (1979)Theory of Population Genetics and Evolutionary Ecology: An Introduction, p. 634. Macmillan, NY, USA.Google Scholar
  38. Roughgarden, J. (1983) The theory of coevolution. InCoevolution (D. J. Futuyma and M. Slatkin, eds), pp. 33–64. Sinauer, Sunderland, MA, USA.Google Scholar
  39. Roughgarden, J. (1987) Community coevolution: a comment.Evolution 41, 1130–4.Google Scholar
  40. Szathmaáry, E. (1991) Simple growth laws and selection consequences.TREE 11, 366–70.Google Scholar
  41. Schoener, T. W. (1973) Population growth regulated by intraspecific competition for energy or time: some simple representations.Theor. Pop. Biol. 4, 56–84.Google Scholar
  42. Slatkin, M. (1983) Genetic background. InCoevolution (D. J. Futuyma and M. Slatkin, eds), pp. 14–32. Sinauer, Sunderland, MA, USA.Google Scholar
  43. Taper, M. L. and Case, T. J. (1985) Quantitative genetic models for the coevolution of character displacement.Ecology 66, 355–71.Google Scholar
  44. Tilman, D. (1982)Resource Competition and Community Structure. Princeton University Press, Princeton, NJ.Google Scholar
  45. Verhulst, P. F. (1838) Notice sur la loi que la population suit dans son accroissement.Corresp. Math. Phys. 10, 113–26.Google Scholar
  46. Vincent, T. L. and Brown, J. S. (1988) The evolution of ESS theory.Ann. Rev. Ecol. Syst. 19, 423–43.Google Scholar
  47. Vincent, T. L. (1990) Strategy dynamics and the ESS. InDynamics of Complex Interconnected Biological Systems (T. L. Vincent, A. I. Mees and L. S. Jennings, eds), pp. 236–62. Birkhäuser, Boston, USA.Google Scholar
  48. Wollkind, D. J. (1976) Exploitation in three trophic levels: an extension allowing intraspecies carnivore interaction.Am. Nat. 107, 275–94.Google Scholar
  49. Yodzis, P. (1989)Introduction to Theoretical Ecology. Harper and Row, NY, USA.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Wayne M. Getz
    • 1
  1. 1.Department of EntomologyUniversity of CaliforniaBerkeleyUSA

Personalised recommendations