Advertisement

Evolutionary Ecology

, Volume 7, Issue 3, pp 270–278 | Cite as

Phylogenetic contrasts and the evolution of mammalian life histories

  • David Berrigan
  • Eric L. Charnov
  • Andy Purvis
  • Paul H. Harvey
Article

Summary

A recent synthetic model of mammalian life history evolution predicts that αM = 3(1−δ0.25), where αM is the product of age at maturity and the average adult instantaneous mortality rate, and δ is the ratio of weight at independence to average adult female weight. Previous studies have tested this prediction by fitting a nonlinear regression to data collected for several species of mammals. However, this procedure suffers from non-independence of data points and may have led to incorrect estimates of regression parameters. We test the same life history prediction using phylogenetically independent contrasts with a phylogeny and data for 23 species of mammals. The results accord with the predicted relationship. Our study is one of the few examples where phylogenetic information has been used to improve the statistical power of a quantitative, model-based prediction of how life history variables should co-evolve.

Keywords

mammal life histories comparative method dimensionless numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulmer, M., Wolfe, K. H. and Sharp, P. M. (1991) Synonymous nucleotide substitution rates in mammalian genes: implications for the molecular clock and the relationships of mammalian orders.Press Proc. Natl Acad. Sci. USA 88, 5974–8.Google Scholar
  2. Calder, W. A. (1984)Size, Function and Life History. Harvard University Press, Cambridge, MA, USA.Google Scholar
  3. Case, T. J. (1978) On the evolution and adaptive significance of postnatal growth rates in the terrestrial vertebrates.Q. Rev. Biol. 53, 243–82.PubMedGoogle Scholar
  4. Charnov, E. L. (1991) Evolution of life history variation among female mammals.Proc. Nat. Acad. Sci. USA 88, 1134–7.PubMedGoogle Scholar
  5. Charnov, E. L. and Berrigan, D. (1990) Dimensionless numbers and life history evolution: age of maturity versus the adult lifespan.Evol. Ecol. 4, 273–5.Google Scholar
  6. Charnov, E. L. and Berrigan, D. (1991a) Dimensionless numbers and the assembly rules for life histories.Phil. Trans. Roy. Soc. Lond. (B) 332 41–8.Google Scholar
  7. Charnov, E. L. and Berrigan, D. (1991b) Evolution of life history patterns in animals with indeterminate growth, particularly fish.Evol. Ecol. 5, 63–8.Google Scholar
  8. Ellis, L. S. and Maxson, L. R. (1979) Evolution of the chipmunk generaEutamias andTamias.J. Mammal. 60, 331–4.Google Scholar
  9. Felsenstein, J. (1985) Phylogenies and the comparative method.Amer. Natur. 125, 1–15.Google Scholar
  10. Georgiadis, N. J., Kat, P. W. and Oketch, H. (1990) Allozyme divergence within the Bovidae.Evolution 44, 2135–49.Google Scholar
  11. Grzimek, B. (1990)Encyclopedia of Mammals. 5 Vols. McGraw-Hill, New York, USA.Google Scholar
  12. Hafner, D. J. (1984) Evolutionary relationships of the Nearctic Sciuridae. InThe biology of ground dwelling squirrels (J. O. Murie and G. R. Michener, ed.), pp. 3–23. University of Nebraska Press, Omaha.Google Scholar
  13. Harvey, P. H. and Mace, G. M. (1982) Comparisons between taxa and adaptive trends: problems of methodology. InCurrent problems in sociobiology (King's College Sociobiology Group, ed.), pp. 343–61. Cambridge University Press, Cambridge, UK.Google Scholar
  14. Harvey, P. H. and Nee, S. (1991) How to live like a mammal.Nature 350, 23–4.PubMedGoogle Scholar
  15. Harvey, P. H. and Pagel, M. D. (1991)The Comparative Method in Evolutionary Biology. Oxford University Press, Oxford, UK.Google Scholar
  16. Harvey, P. H. and Purvis, A. (1991). Comparative methods for explaining adaptations.Nature 351, 619–24.PubMedGoogle Scholar
  17. Harvey, P. H. and Zammuto, R. M. (1985) Patterns of mortality and age at first reproduction in natural populations of mammals.Nature 315, 319–20.PubMedGoogle Scholar
  18. Harvey, P. H., Read, A. F. and Promislow, D. E. L. (1989) Life history variation in placental mammals: unifying the data with theory.Oxford Sur. Evol. Biol. 6, 13–32.Google Scholar
  19. Hight, M. E., Goodman, M. and Prychodko, W. (1974) Immunological studies of the Sciuridae.Syst. Zool. 23, 12–25.Google Scholar
  20. Janis, C. M. (1988) New ideas in ungulate phylogeny and evolution.Trends Ecol. Evol. 3, 291–7.Google Scholar
  21. Lavigne, D. M. J. (1982) Similarity of energy budgets of animal populations.Anim. Ecol. 51, 195–206.Google Scholar
  22. Li, W.-H., Gouy, M., Sharp, P. M., O'hUigin, C. and Yang, Y. W. (1990) Molecular phylogeny of Rodentia, Lagomorpha, Primates, Artiodactyla, and Carnivora and molecular clocks.Proc. Natl. Acad. Sci. USA. 87, 6703–7.PubMedGoogle Scholar
  23. Martins, E. and Garland, T. (1991) Phylogenetic analysis of the correlated evolution of continuous characters: a simulation study.Evolution 45, 534–57.Google Scholar
  24. Nadler, C. F., Lyapunova, E. A., Hoffmann, R. S., Vorontsov, N. N., Shaitarova, L. L. and Borisov, Y. M. (1984) Chromosomal evolution in Holarctic ground squirrels (Spermophilus).Z. Säugetierkunde 49, 78–90.Google Scholar
  25. Pagel, M. D. (1992) A method for the analysis of comparative data.J. Theor. Biol. 156, 431–42.Google Scholar
  26. Pagel, M. D. and Harvey, P. H. (1989) Taxonomic differences in the scaling of brain on body weight among mammals.Science 244, 1589–93.PubMedGoogle Scholar
  27. Partridge, L. and Harvey, P. H. (1988) The ecological context of life history evolution.Science 241, 1449–55.Google Scholar
  28. Peters, R. H. (1983)The Ecological Implications of Body Size. Cambridge University Press, Cambridge, UK.Google Scholar
  29. Promislow, D. E. L. and Harvey, P. H. (1990) Living fast and dying young: a comparative analysis of life history variation among mammals.J. Zool. 220, 417–37.Google Scholar
  30. Read, A. F. and Harvey, P. H. (1989) Life history differences among the Eutherian radiations.J. Zool. 219, 329–53.Google Scholar
  31. Reiss, M. J. (1989)The Allometry of Growth and Reproduction. Cambridge University Press, Cambridge, UK.Google Scholar
  32. Reznick, D. (1985) Costs of reproduction: an evaluation of the empirical evidence.Oikos 44, 257–67.Google Scholar
  33. Ridley, M. (1983)The Explanation of Organic Diversity: the Comparative Method and Adaptations for Mating. Oxford University Press, Oxford, UK.Google Scholar
  34. Roff, D. A. (1984) The evolution of life history parameters in Teleosts.Can. J. Fish. Aqua. Sci. 41, 989–1000.Google Scholar
  35. Sarich, V. M. (1985) Rodent macromolecular systematics. InEvolutionary relationships among Rodents; a multidisciplinary analysis (W. P. Luckett and J.-L. Hartenberger, eds), pp. 423–52. NATO ASI series A 92, Plenum Press, NY, USA.Google Scholar
  36. Shine, R. and Charnov, E. L. (1992) Patterns of survivorship, growth and maturation in snakes and lizards.Amer. Nat. (in press).Google Scholar
  37. Sprent, P. (1969)Models in Regression and Related Topics. Methuen, London, UK.Google Scholar
  38. Stearns, S. C. (1983) The influence of size and phylogeny on life history patterns.Oikos 41, 173–87.Google Scholar
  39. Wozencraft, W. C. (1986) Classification of the Recent Carnivora. InCarnivore Biology (J. L. Gittleman, ed.), pp. 569–93. Cornell University Press, Ithaca, NY, USA.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • David Berrigan
    • 1
  • Eric L. Charnov
    • 1
  • Andy Purvis
    • 2
  • Paul H. Harvey
    • 2
  1. 1.Department of BiologyUniversity of UtahSalt Lake CityUSA
  2. 2.Department of ZoologyUniversity of OxfordOxfordUK

Personalised recommendations