Evolutionary Ecology

, Volume 7, Issue 3, pp 251–269

The effects of the mating system on the evolution of migration in a spatially heterogeneous population

  • Pamela Wiener
  • Marcus W. Feldman
Article

Summary

Verbal explanations for the evolution of migration and dispersal often invoke inbreeding depression as an important force. Experimental work on plant populations indicates that while inbreeding depression may favor increased migration rates, adaptation to local environments may reduce the advantage to migrants. We formalize and test this hypothesis using a two-locus genetic model that incorporates lowered fitness in offspring produced by self-fertilization, and habitat differentiation. We also use the model to address questions about the general theory of genetic modifiers and the modifier reduction principle. We find that even under conditions when migration would increase the mean fitness of a population, migration may not be favored. This result is due to the associations that develop between genotypes at a locus subject to overdominant selection and at a neutral locus controlling the migration rate. Thus, it appears that, in this model, the forces of local adaptation, which favor a reduction in the migration rate, overwhelm those of inbreeding depression, which may favor dispersal.

Keywords

evolution of dispersal self-fertilization mating systems migration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altenberg, L. and Feldman, M. W. (1987) Selection, generalized transmission and the evolution of modifier genes. I. The reduction principle.Genetics 117, 559–72.PubMedGoogle Scholar
  2. Antonovics, J., Bradshaw, A. D. and Turner, R. G. (1971) Heavy metal tolerance in plants.Adv. Ecol. Res. 7, 1–85.Google Scholar
  3. Asmussen, M. (1983) Evolution of dispersal in density regulated populations: A haploid model.Theor. Pop. Biol. 23, 281–99.Google Scholar
  4. Balkau, B. and Feldman, M. W. (1973) Selection for migration modification.Genetics 74, 171–4.Google Scholar
  5. Bengtsson, B. O. (1978) Avoiding inbreeding: At what cost?J. Theor. Biol. 73, 439–44.PubMedGoogle Scholar
  6. Bull, J. J., Thompson, C., Ng, D. and Moore, R. (1987) A model for natural selection of genetic migration.Am. Nat. 129, 143–57.Google Scholar
  7. Charlesworth, D. and Charlesworth, B. (1987) Inbreeding depression and its evolutionary consequences.Ann. Rev. Ecol. Syst. 18, 237–68.Google Scholar
  8. Charlesworth, D., Charlesworth, B. and Strobec, C. (1979) Selection for recombination in partially selffertilizing populations.Genetics 93, 237–44.Google Scholar
  9. Chesser, R. K. and Ryman, N. (1986) Inbreeding as a strategy in subdivided populations.Evolution 40, 616–24.Google Scholar
  10. Comins, H. N. (1982) Evolutionarily stable strategies for localized dispersal in two dimensions.J. Theor. Biol. 94, 579–606.PubMedGoogle Scholar
  11. Comins, H. N., Hamilton, W. D. and May, R. M. (1980) Evolutionarily stable dispersal strategies.J. Theor. Biol. 82, 205–30.PubMedGoogle Scholar
  12. Dingle, H. (1988) Quantitative genetics of life history evolution in a migrant insect.Population Genetics and Evolution (G. de Jong, ed.). Springer-Verlag, Berlin.Google Scholar
  13. Dudash, M. R. (1990) Relative fitness of selfed and outcrossed progeny in a self-compatible, protandrous speciesSabatia angularis L. (Gentianaceae): A comparison in three environments.Evolution 44, 1129–39.Google Scholar
  14. Ewens, W. J. (1979)Mathematical Population Genetics. Springer-Verlag, New York.Google Scholar
  15. Feldman, M. W. and Liberman, U. (1986) An evolutionary reduction principle for genetic modifiers.Proc. Natl. Acad. Sci. USA 83, 4824–7.PubMedGoogle Scholar
  16. Frank, S. A. (1986) Dispersal polymorphisms in subdivided populations.J. Theor. Biol. 122, 303–9.PubMedGoogle Scholar
  17. Gadgil, M. (1971) Dispersal: Population consequences and evolution.Ecology 52, 253–61.Google Scholar
  18. Galen, C., Shore, S. and Deyoe, H. (1991) Ecotypic divergence in alpinePolemonium viscosum: Genetic structure, quantitative variation, and local adaptation.Evolution 45, 1218–28.Google Scholar
  19. Gillespie, J. H. (1981) The role of migration in the genetic structure of populations in temporally and spatially varying environments. III. Migration modification.Am. Nat. 117, 223–33.Google Scholar
  20. Gould, F. (1991) The evolutionary potential of crop pests.Am. Scient. 79, 496–507.Google Scholar
  21. Hamilton, W. D. and May, R. M. (1977) Dispersal in stable habitats.Nature 269, 578–81.Google Scholar
  22. Hansson, L. (1991) Dispersal and connectivity in metapopulations.Biol. J. Linn. Soc. 42, 89–103.Google Scholar
  23. Hartl, D. L. and Clark, A. G. (1989)Principles of Population Genetics. Sinauer Associates, Sunderland, MA.Google Scholar
  24. Hastings, A. (1983) Can spatial variation alone lead to selection for dispersal?Theor. Pop. Biol. 24, 244–51.Google Scholar
  25. Holsinger, K. E. and Feldman, M. W. (1983a) Linkage modification with mixed random mating and selfing: A numerical study.Genetics 103, 323–33.PubMedGoogle Scholar
  26. Holsinger, K. E. and Feldman, M. W. (1983b) Modifiers of mutation rate: Evolutionary optimum with complete selfing.Proc. Natl Acad. Sci. USA 80, 6732–4.Google Scholar
  27. Jain, S. K. and Bradshaw, A. D. (1966) Evolutionary divergence among adjacent plant populations. I. The evidence and its theoretical analysis.Heredity 21, 407–41.Google Scholar
  28. Johnson, M. L. and Gaines, M. S. (1990) Evolution of dispersal: Theoretical models and empirical tests using birds and mammals.Ann. Rev. Ecol. Syst. 21, 449–80.Google Scholar
  29. Karlin, S. (1969)Equilibrium Behaviour of Population Genetic Models with Non-Random Mating. Gordon and Breach, New York, USA.Google Scholar
  30. Karlin, S. (1982) Classifications of selection-migration structures and conditions for a protected polymorphism.Evolutionary Biology (M. K. Hecht, B. Wallace and G. T. Prance, eds) Vol. 14, pp. 61–204. Plenum, New York, USA.Google Scholar
  31. Karlin, S. and McGregor, J. (1972) Application of method of small parameters to multi-niche population genetic models.Theor. Pop. Biol. 3, 186–209.Google Scholar
  32. Karlin, S. and McGregor, J. (1974) Towards a theory of the evolution of modifier genes.Theor. Pop. Biol. 5, 59–103.Google Scholar
  33. Kimura, M. and Ohta, T. (1971)Theoretical Aspects of Population Genetics. Princeton University Press, Princeton, NJ, USA.Google Scholar
  34. Kuno, E. (1981) Dispersal and the persistence of populations in unstable habitats: A theoretical note.Oecologia 49, 123–6.Google Scholar
  35. Levin, S. A., Cohen, D. and Hastings, A. (1984) Dispersal strategies in patchy environments.Theor. Pop. Biol. 26, 165–91.Google Scholar
  36. Liberman, U. and Feldman, M. W. (1986a) A general reduction principle for genetic modifiers of recombination.Theor. Pop. Biol. 30, 341–71.Google Scholar
  37. Liberman, U. and Feldman, M. W. (1986b) Modifiers of mutation rate: A general reduction principle.Theor. Pop. Biol. 30, 125–42.Google Scholar
  38. Liberman, U. and Feldman, M. W. (1989) The reduction principle for genetic modifiers of the migration rate.Mathematical Evolutionary Theory (M. W. Feldman, ed.), pp. 111–37. Princeton University Press, Princeton, NJ, USA.Google Scholar
  39. Lynch, M. (1991) The genetic interpretation of inbreeding depression and outbreeding depression.Evolution 45, 622–9.Google Scholar
  40. Motro, U. (1982a) Optimal rates of dispersal. I. Haploid populations.Theor. Pop. Biol. 21, 394–411.Google Scholar
  41. Motro, U. (1982b) Optimal rates of dispersal. II. Diploid populations.Theor. Pop. Biol. 21, 412–29.Google Scholar
  42. Motro, U. (1983) Optimal rates of dispersal. III. Parent-offspring conflict.Theor. Pop. Biol. 23, 159–68.Google Scholar
  43. Roff, D. A. (1975) Population stability and the evolution of dispersal in a heterogeneous environment.Oecologia 19, 217–23.Google Scholar
  44. Schmitt, J. and Gamble, S. E. (1990) The effect of distance from the parental site on offspring performance and inbreeding depression inImpatiens capensis.Evolution 44, 2022–30.Google Scholar
  45. Seneta, E. (1981)Non-negative Matrices and Markov Chains. Springer-Verlag, New York, USA.Google Scholar
  46. Slatkin, M. (1987) Gene flow and the geographic structure of natural populations.Nature 236, 787–92.Google Scholar
  47. Strobeck, C. (1979) Partial selfing and linkage: The effect of a heterotic locus on a neutral locus.Genetics 92, 305–15.Google Scholar
  48. Taylor, P. D. (1988) An inclusive fitness model for dispersal of offspring.J. Theor. Biol. 130, 363–78.Google Scholar
  49. Teague, R. (1977) A model of migration modification.Theor. Pop. Biol. 12, 86–94.Google Scholar
  50. Uyenoyama, M. K. and Bengtsson, B. O. (1989) On the origin of meiotic reproduction: A genetic modifier model.Genetics 123, 873–85.PubMedGoogle Scholar
  51. Uyenoyama, M. K. and Waller, D. M. (1991a) Coevolution of self-fertilization and inbreeding depression. I. Mutation-selection balance at one and two loci.Theor. Pop. Biol. 40, 14–46.Google Scholar
  52. Uyenoyama, M. K. and Waller, D. M. (1991b) Coevolution of self-fertilization and inbreeding depression. II. Symmetric overdominance in viability.Theor. Pop. Biol. 40, 47–77.Google Scholar
  53. Waser, N. M. and Price, M. V. (1983) Optimal and actual outcrossing in plants and the nature of plantpollinator interaction.Handbook of Experimental Pollination Biology (C. E. Jones and R. J. Little, eds), pp. 277–93. Van Nostrand-Reinhold, New York, USA.Google Scholar
  54. Waser, N. M. and Price, M. V. (1989) Optimal outcrossing inIpomopsis aggregata: Seed set and offspring fitness.Evolution 43, 1097–109.Google Scholar
  55. Waser, P. M., Austad, S. N. and Keane, B. (1986) When should animals tolerate inbreeding?Am. Nat. 128, 529–37.Google Scholar
  56. Wiener, P. and Feldman, M. W. (1991) The evolution of dispersal in a model of mixed selfing and random mating.Evolution 45 1717–26.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Pamela Wiener
    • 1
  • Marcus W. Feldman
    • 1
  1. 1.Department of Biological SciencesStanford UniversityStanfordUSA
  2. 2.Department of BiologyEmory UniversityAtlantaUSA

Personalised recommendations