Evolutionary Ecology

, Volume 7, Issue 1, pp 25–44 | Cite as

Seed dispersal curves: Behavior of the tail of the distribution

  • Stephen Portnoy
  • Mary F. Willson
Article

Summary

Seed dispersal is important both to plant fitness and to plant population structure. We suggest that the tail of the seed dispersal curve is at least as important biologically as the modal portion of the curve, and we present a relatively simple, four-parameter model, based on diffusion principles, for the tail of the seed distribution. This model includes two types of qualitative behavior: algebraic tails (which tend to be longer and have greater ‘reach’) and exponential tails (which are shorter and have less ‘reach’). We have selected 68 data sets from the literature, each giving a seed shadow that could be categorized statistically as (1) exponential, (2) algebraic, (3) neither, or (4) both models fit adequately. Algebraic shapes for seed-shadow tails were common in this sample, and tail behavior was not generally specific to a particular dispersal mode. This result may suggest that algebraic tails are generally favored by selection and can be achieved by several means, but limitations of existing data sets and of statistical methodology preclude final judgement. Smaller complete samples of seed distances would provide a better basis for the analysis of tails than do the present form of data sets (consisting of counts of seeds in discrete distance categories).

Keywords

seed shadows distribution tail diffusion process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R. R. (1969) Seedfall and establishment of Englemann spruce in clearcut openings: A case history.USDA Forestry Serv. Res. Pap. RM-53, 1–8.Google Scholar
  2. Andersen, M. (1991) Mechanistic models for the seed shadows of wind dispersed plants.Am. Nat. 137, 476–97.Google Scholar
  3. Antonovics, J. and Ellstrand, N. (1985) The fitness of dispersed progeny: experimental studies withAnthoxanthum odoratum.Genetic Differentiation and Dispersal in Plants (P. Jacquard, G. Hein, and J. Antonovics, eds), pp. 369–81. Springer-Verlag, Berlin, Germany.Google Scholar
  4. Arnold, R. M. (1981) Population dynamics and seed dispersal ofChaenorrhinum minus on railroad cinder ballast.Am. Midl. Nat. 106, 80–91.Google Scholar
  5. Augspurger, C. K. (1983) Seed dispersal of the tropical tree,Platypodium elegans, and the escape of its seedlings from fungal pathogens,J. Ecol. 71, 759–71.Google Scholar
  6. Augspurger, C. K. and Franson, S. E. (1987) Wind dispersal of artificial fruits varying in mass, area, and morphology,Ecology 68, 27–42.Google Scholar
  7. Augspurger, C. K. and Hogan, K. P. (1983) Wind dispersal of fruits with variable seed number in a tropical tree (Lonchocarpus pentaphyllus: Leguminosae),Am. J. Bot. 70, 1031–7.Google Scholar
  8. Augspurger, C. K. and Kitajima, K. (1991) Experimental studies of seedling recruitment from contrasting seed distributions,Ecology, (in press).Google Scholar
  9. Becker, R. A. and Chambers, J. M. (1984)S: An Interactive Environment for Data Analysis and Graphics. Wadsworth, Belmont, CA, USA.Google Scholar
  10. Burbidge, A. H. and Whelan, R. J. (1982) Seed dispersal in a cycad,Macrozamia riedlei.Aust. J. Ecol. 7, 63–7.Google Scholar
  11. Clark, C. R. (1987) Asymptotic properties of some multidimensional diffusions.Ann. Probab. 15, 985–1008.Google Scholar
  12. Comins, H. N., Hamilton, W. D. and May, R. M. (1980) Evolutionarily stable dispersal strategies.J. Theor. Biol. 82, 205–30.Google Scholar
  13. Crank, J., McFarlane, N. R., Newby, J. C., Paterson, G. D. and Pedley, J. B. (1981)Diffusion Processes in Environmental Systems. Macmillan, London, UK.Google Scholar
  14. Cremer, K. W. (1966) Dissemination of seed fromEucalyptus regnans.Aust. Forestry 30, 33–7.Google Scholar
  15. Dekkers, A. L. M., Einmahl, J. H. J. and de Haan, L. (1989) A moment estimator for the index of an extreme value distribution.Ann. Statist. 17, 1795–832.Google Scholar
  16. Ford, R. H., Sharik, T. L., and Feret, P. P. (1983) Seed dispersal of the endangered Virginia round-leaf birch (Betula uber),Forestry Ecol. Mangt 6, 115–28.Google Scholar
  17. Fox, P. A. (1984)The Post Mathemetical Subroutine library. Bell Laboratories, Murray Hill, NJ, USA.Google Scholar
  18. Geritz, S. A. H., de Jong, T. J. and Klinkhamer, P. G. L. (1984) The efficacy of dispersal in relation to safe site area and seed production.Oecologia 62, 219–21.Google Scholar
  19. Green, D. S. (1983) The efficacy of dispersal in relation to safe site density.Oecologia 56, 356–8.Google Scholar
  20. Greene, D. F. (1989)The Aerodynamics and Dispersal of Plumed and Winged Seeds. Ph.D. Thesis, University of Calgary, USA.Google Scholar
  21. Greene, D. F. and Johnson, E. A. (1989a) A model of wind dispersal of winged or plumed seeds.Ecology 702, 339–47.Google Scholar
  22. Greene, D. F. and Johnson, E. A. (1989b) Particulate diffusion models and dispersal of seeds by wind.TREE 4, 191–2.Google Scholar
  23. Hamilton, W. D. and May, R. M. (1977) Dispersal in stable habitats.Nature 269, 578–81.Google Scholar
  24. Hallwachs, W. (1986) Agoutis (Dasyprocta punctata), the inheritors of guapinol (Hymenaea courbaril: Leguminosae).Frugivores and Seed Dispersal (A. Estrada and T. H. Fleming, eds), pp. 285–304. Junk, Dordrecht, Germany.Google Scholar
  25. Horvitz, C. C. and Schemske, D. W. (1986) Seed dispersal and environmental heterogeneity in a neotropical herb: a model of population and patch dynamics.Frugivores and Seed Dispersal (A. Estrada and T. H. Fleming, eds), pp. 169–86. Junk, Dordrecht, Germany.Google Scholar
  26. Howe, H. F. and Smallwood, J. (1982) Ecology of seed dispersal.Ann. Rev. Ecol. Syst. 13, 201–28.Google Scholar
  27. Howe, H. F., Schupp, E. W. and Westley, L. C. (1985) Early consequences of seed dispersal for a neotropical tree (Virola surinamensis).Ecology 66, 781–91.Google Scholar
  28. Isaac, L. A. (1930) Seed flight in the Douglas fir region.J. Forest. 28, 492–9.Google Scholar
  29. Janzen, D. H., Miller, G. A., Hackforth-Jones, J., Pond, C. M., Hooper, K. and Janos, D. P. (1976) Two Costa Rican bat-generated seed shadows ofAndira inermis (Leguminosae).Ecology 57, 1168–75.Google Scholar
  30. Koch, G. and Imrey, P. (1985)Analysis of Categorical Data. Les Presses de L'Université de Montréal, Montréal, Canada.Google Scholar
  31. Kurtz, Thomas G. (1981)Approximation of Population Processes. SIAM, Philadelphia, USA.Google Scholar
  32. Lamont, B. (1985) Dispersal of the winged fruits ofNuytsia floribunda (Loranthaceae).Aust. J. Ecol. 10, 187–93.Google Scholar
  33. Lee, T. D. (1984). Effects of seed number per fruit on seed dispersal; inCassia fasciculata (Caesalpiniaceae).Bot. Gaz. 145, 136–9.Google Scholar
  34. Levin, D. A. and Kerster, H. W. (1968) Local gene dispersal in phlox.Evolution 22, 130–9.Google Scholar
  35. Levin, D. A. and Kerster, H. W. (1969) Density-dependent gene dispersal inLiatris.Am. Nat. 103, 61–74.Google Scholar
  36. Levin, D. A. and Kerster, H. W. (1974) Gene flow in seed plants.Evol. Biol. 7, 139–220.Google Scholar
  37. McCaughey, W. W. and Schmidt, W. C. (1987) Seed dispersal of Englemann Spruce in the intermountain west.Northwest Sci. 61, 1–6.Google Scholar
  38. McEvoy, P. B. and Cox, C. S. (1987). Wind dispersal distances in dimorphic achenes of ragwort,Senecio jacobaea.Ecology 68, 2006–15.Google Scholar
  39. Morse, D H. and Schmitt, J. (1985) Propagule size, dispersal ability, and seedling performances inAsclepias syriaca.Oecologia 67, 372–9.Google Scholar
  40. Okubo, Akira (1980)Diffusion and Ecological Problems: Mathematical Models. Springer-Verlag, Berlin, Germany.Google Scholar
  41. Okubo, Akira and Levin, Simon A. (1989) A theoretical framework for data analysis of wind dispersal of seeds and pollen.Ecology 70, 329–38.Google Scholar
  42. Platt, W. J. (1976). The natural history of a fugitive prairie plant (Mirabilis hirsuta (Parsh) MacM).Oecologia 22, 399–405.Google Scholar
  43. Platt, W. J. and Weis, I. M. (1977) Resource partitioning and competition within a guild of fugitive prairie plants.Am. Nat. 111, 479–513.Google Scholar
  44. Platt, W. J. and Weis, I. M. (1985). An experimental study of competition among fugitive prairie plants.Ecology 66, 708–20.Google Scholar
  45. Poole, A. L. and Cairns, D. (1940) Botanical aspects of ragwort (Senecio jacobaea L.) control.DSIR Bull. 82.Google Scholar
  46. Rabinowitz, D. and Rapp, J. K. (1979) Dual dispersal modes in hairgrass,Agrostis hiemalis (Walt.) B.S.P. (Gramineae).Bull. Torrey Bot. Club 106, 32–6.Google Scholar
  47. Rao, C. R. (1965)Linear Statistical Inference and Its Applications. Wiley, New York, USA.Google Scholar
  48. Ricciardi, L. (1977)Diffusion Processes and Related Topics in Biology. Springer-Verlag, Berlin, Germany.Google Scholar
  49. Roe, A. L. (1967) Seed dispersal in bumper spruce seed year,USDA Forestry Serv. Res. Pap. INT-39, 1–10.Google Scholar
  50. Schaal, B. A. (1980) Measurement of gene flow inLupinus texensis.Nature 284, 450–1.Google Scholar
  51. Silvertown, J. (1991) Dorothy's dilemma and the unification of plant population biology.TREE 6, 346–8.Google Scholar
  52. Smith, R. L. (1987) Estimating tails of probability distributions.Ann. Statist. 15, 1174–207.Google Scholar
  53. Stamp, N. E. and Lucas, J. R. (1983) Ecological correlates of explosive seed dispersal.Oecologia 59, 272–8.Google Scholar
  54. Swaine, M. D. and Beer, T. (1977) Explosive seed dispersal inHura crepitans L. (Euphorbiaceae).New Phytol 78, 695–708.Google Scholar
  55. Tamari, C. and Jacalne, D. V. (1984) Fruit dispersal of dipterocarps.Bull. Forestry Forestry Prod. Res. Inst. 325, 127–40.Google Scholar
  56. Vickery, R. K., Phillips, D. R. and Wonsavage, P. R. (1986) Seed dispersal inMimulus guttatus by wind and deer.Am. Midl. Nat. 116, 206–8.Google Scholar
  57. Webber, M. L. (1934) Fruit dispersal.Malay. Forester 3, 18–9.Google Scholar
  58. Westelaken, I. L. and Maun, M. A. (1985) Spatial pattern and seed dispersal ofLithospermum carolinense in Lake Huron sand dunes.Can. J. Bot. 63, 125–32.Google Scholar
  59. Willson, M. F. (1992) Dispersal mode, seed shadows, and colonization patterns.Vegetatio (in press).Google Scholar
  60. Woodall, S. L. (1982). Seed dispersal inMelaleuca quinquenervia.Florida Sci. 45, 81–93.Google Scholar

Copyright information

© Chapman & Hall 1993

Authors and Affiliations

  • Stephen Portnoy
    • 1
  • Mary F. Willson
    • 2
  1. 1.Department of StatisticsUniversity of IllinoisChampaignUSA
  2. 2.Forestry Sciences LaboratoryJuneauUSA

Personalised recommendations