Journal of Geometry

, Volume 62, Issue 1–2, pp 99–120 | Cite as

Generalized halfspaces in restricted-orientation convexity

  • Eugene Fink
  • Derick Wood


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Bruckner, C. K. andBruckner, J. B.: On Ln-sets, the Hausdorff metric, and connectedness.Proceedings of the American Mathematical Society, 13:765–767, 1962.Google Scholar
  2. [2]
    Fink, E. andWood, D.: Three-dimensional strong convexity and visibility. InProceedings of the Vision Geometry IV Conference, 1995.Google Scholar
  3. [3]
    Fink, E. andWood, D.: Fundamentals of restricted-orientation convexity.Information Sciences, 1997. To appear.Google Scholar
  4. [4]
    Fink, E. andWood, D.: Strong restricted-orientation convexity.Geometriae Dedicata, 1997. To appear.Google Scholar
  5. [5]
    Grünbaum, B., Klee, V., Perles, M. A., andShephard, G. C.:Convex Polytopes. John Wiley & Sons, New York, NY, 1967.Google Scholar
  6. [6]
    Güting, R. H.: StabbingC-oriented polygons.Information Processing Letters, 16:35–40, 1983.Google Scholar
  7. [7]
    Klee, V.: What is a convex set?American Mathematical Monthly, 78:616–631, 1971.Google Scholar
  8. [8]
    Lipski, W. andPapadimitriou, C. H.: A fast algorithm for testing for safety and detecting deadlock in locked transaction systems.Journal of Algorithms, 2:211–226, 1981.Google Scholar
  9. [9]
    Montuno, D. Y. andFournier, A.: Finding thex−y convex hull of a set ofx−y polygons. Technical Report 148, University of Toronto, Toronto, Ontario, 1982.Google Scholar
  10. [10]
    Nicholl, T. M., Lee, D. T., Liao, Y. Z., andWong, C. K.: Constructing the X-Y convex hull of a set of X-Y polygons.BIT, 23:456–471, 1983.Google Scholar
  11. [11]
    Ottmann, T., Soisalon-Soininen, E., andWood, D.: On the definition and computation of rectilinear convex hulls.Information Sciences, 33:157–171, 1984.Google Scholar
  12. [12]
    Preparata, F. P. andShamos, M. I.:Computational Geometry. Springer-Verlag, New York, NY, 1985.Google Scholar
  13. [13]
    Rawlins, G. J. E.:Explorations in Restricted-Orientation Geometry. PhD thesis, University of Waterloo, Ontario. 1987. Technical Report CS-87-57.Google Scholar
  14. [14]
    Rawlins, G. J. E. andWood, D.: Optimal computation of finitely oriented convex hulls.Information and Computation, 72:150–166, 1987.Google Scholar
  15. [15]
    Rawlins, G. J. E. andWood, D.: Ortho-convexity and its generalizations. In God-fried T. Toussaint, editor,Computational Morphology, pages 137–152. Elsevier Science Publishers B. V., North-Holland, 1988.Google Scholar
  16. [16]
    Rawlins, G. J. E. andWood, D.: Restricted-orientation convex sets.Information Sciences, 54:263–281, 1991.Google Scholar
  17. [17]
    Schuierer, S.:On Generalized Visibility. PhD thesis, Universität Freiburg, Germany, 1991.Google Scholar
  18. [18]
    Soisalon-Soininen, E. andWood, D.: Optimal algorithms to compute the closure of a set of iso-rectangles.Journal of Algorithms, 5:199–214, 1984.Google Scholar
  19. [19]
    Valentine, F. A.: Local convexity and Ln-sets.Proceedings of the American Mathematical Society. 16:1305–1310, 1965.Google Scholar
  20. [20]
    Widmayer, P., Wu, Y. F., andWong, C. K.: On some distance problems in fixed orientations.SIAM Journal on Computing, 16:728–746, 1987.Google Scholar

Copyright information

© Birkhäuser Verlag 1998

Authors and Affiliations

  • Eugene Fink
    • 1
  • Derick Wood
    • 2
  1. 1.School of Computer ScienceCarnegie Mellon UniversityPittsburghUSA
  2. 2.Department of Computer ScienceHong Kong University of Science & TechnologyKowloonHong Kong

Personalised recommendations