Keywords
Invariant Subspace Subscalar Operator
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Preview
Unable to display preview. Download preview PDF.
References
- [1]E. Albrecht andB. Chevreau, Invariant subspaces for ℓp-operators having Bishop's property (β) on a large part of their spectrum. J. Operator Theory18, 339–372 (1987).Google Scholar
- [2]
- [3]C. Apostol, The spectral flavour of Scott Brown's techniques. J. Operator Theory6, 3–12 (1981).Google Scholar
- [4]S. W. Brown, Some invariant subspaces for subnormal operators. Integral Equations Operator Theory1, 310–333 (1978).Google Scholar
- [5]S. W. Brown, Hyponormal operators with thick spectrum have invariant subspaces. Ann. of Math.125, 93–103 (1987).Google Scholar
- [6]
- [7]J.Eschmeier, Invariant subspaces and Bishop's property (β). Preprint 1987.Google Scholar
- [8]J.Eschmeier and M.Putinar, Bishop's condition (β) and rich extensions of linear operators. Indiana Univ. Math. J., to appear.Google Scholar
- [9]S.Lang, Real analysis. Reading, Massachusetts 1969.Google Scholar
- [10]M. Putinar, Hyponormal operators are subscalar. J. Operator Theory12, 385–395 (1984).Google Scholar
- [11]I.Singer, Bases in Banach spaces II. Berlin-Heidelberg-New York 1981.Google Scholar
- [12]F.-H.Vasilescu, Analytic functional calculus and spectral decompositions. Dordrecht 1982.Google Scholar
Copyright information
© Birkhäuser Verlag 1989