Journal of Geometry

, Volume 61, Issue 1–2, pp 83–104 | Cite as

Small sets of even type and codewords

  • J. D. Key
  • M. J. de Resmini


We examine some geometric configurations of points in designs that give rise to vectors in the codes associated with the designs. In particular we look at small sets of points in projective planes of even order that are met evenly by all the lines of the plane, and find vectors of small weight in the binary hull and in the code's orthogonal.


Projective Plane Geometric Configuration Small Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. F. Assmus, Jr. and J. D. Key.Designs and their Codes. Cambridge University Press, 1992. Cambridge Tracts in Mathematics, Vol. 103 (Second printing with corrections, 1993).Google Scholar
  2. [2]
    W. Bosma and J. Cannon.Handbook of Magma Functions. Department of Mathematics, University of Sydney, November 1994.Google Scholar
  3. [3]
    J. W. P. Hirschfeld.Projective Geometries over Finite Fields. Oxford University Press, 1979.Google Scholar
  4. [4]
    J. D. Key and M. J. de Resmini. Codewords for a projective plane from sets of type (s,t). European J. Combin., 15:259–268, 1994.Google Scholar
  5. [5]
    G. Korchmáros and F. Mazzocca. On (q+t)-arcs of type (0, 2,t) in a desarguesian plane of orderq. Math. Proc. Cambridge Philos. Soc., 108:445–459, 1990.Google Scholar
  6. [6]
    L. Lunelli and M. Sce. k-archi completi nei piani proiettivi desarguesiani di rango 8 e 16. Technical report, Centro Calcoli Numerici, Politecnico di Milano, 1958.Google Scholar
  7. [7]
    G. Menichetti.q-archi completi nei piani di Hall di ordineq=2k.Lincei — Rend. Sc. fis. mat. e nat., 56:518–525, 1974.Google Scholar
  8. [8]
    G. Migliori. Insiemi di tipo (0, 2,q/2) in un piano proiettivo e sistemi di terne di Steiner.Rend. Mat. Appl., 7:77–82, 1987.Google Scholar
  9. [9]
    T. Penttila, G. F. Royle, and M. K. Simpson. ftp site: Directory: pub/graphs/planes16.Google Scholar
  10. [10]
    T. Penttila, G. F. Royle, and M. K. Simpson. Hyperovals in the known projective planes of order 16.J. Combin. Des., 4:59–65, 1996.Google Scholar
  11. [11]
    M. J. de Resmini. On the semifield plane of order 16 with kern GF(2).Ars Combin., 25B:75–92, 1988.Google Scholar
  12. [12]
    M. J. de Resmini. On the Dempwolff plane.Contemp. Math., 111:47–64, 1990.Google Scholar
  13. [13]
    M. J. de Resmini. On the derived semifield plane of order 16.Ars Combin., 29B:97–109, 1990.Google Scholar
  14. [14]
    M. J. de Resmini. On the Johnson-Walker plane.Simon Stevin, 64:113–139, 1990.Google Scholar
  15. [15]
    M. J. de Resmini. Some remarks on the Hall planes of order 16.Congr. Numer., 70:17–27, 1990.Google Scholar
  16. [16]
    M. J. de Resmini. On an exceptional semi-translation plane. In J. W. P. Hirschfeld et al., editor,Finite Geometries and Designs, pages 141–162. Oxford: Oxford University Press, 1991.Google Scholar
  17. [17]
    M. J. de Resmini. On the semifield plane of order 16 with kern GF(4). In A. Barlotti et al., editor,Combinatorics '88, Vol. 2, pages 369–390. Mediterranean Press, 1991. Research and Lecture Notes in Mathematics.Google Scholar
  18. [18]
    M. J. de Resmini. On the classical semitranslation plane of order 16.Ars Combin., 46:191–209, 1997.Google Scholar
  19. [19]
    M. J. de Resmini. On the Mathon plane.J. Geom., 60:47–64, 1997.Google Scholar
  20. [20]
    M. J. de Resmini and L. Puccio. Some combinatorial properties of the dual Lorimer plane.Ars Combin., 24A:131–148, 1987.Google Scholar

Copyright information

© Birkhäuser Verlag 1998

Authors and Affiliations

  • J. D. Key
    • 1
  • M. J. de Resmini
    • 2
  1. 1.Department of Mathematical SciencesClemson UniversityClemsonUSA
  2. 2.Dipartimento di MatematicaUniversitá di Roma ‘La Sapienza’RomeItaly

Personalised recommendations