Journal of Geometry

, Volume 61, Issue 1–2, pp 2–16 | Cite as

On the extendability of code isometries

  • Faina I. Solov'eva
  • Thomas Honold
  • Sergei V. Avgustinovich
  • Werner Heise


A block codeC\( \subseteq\)Fn is calledmetrically rigid, if every isometryφ: CF n with respect to theHamming metric is extendable to an isometry of the whole spaceF n . The metrical rigidity of some classes of codes is discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    L. M. Batten and A. Beutelspacher.The Theory of Finite Linear Spaces. Cambridge University Press, 1993.Google Scholar
  2. [2]
    T. Beth, D. Jungnickel, and H. Lenz.Design Theory. Bibliographisches Institut, Zürich, 1985. Reprinted by Cambridge University Press 1993.Google Scholar
  3. [3]
    P. J. Cameron.Combinatorics: Topics, Techniques, Algorithms. Cambridge University Press, 1994.Google Scholar
  4. [4]
    P. J. Cameron and J. H. van Lint.Graphs, Codes and Designs. Number 43 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1980. A revised edition of these notes is [5].Google Scholar
  5. [5]
    P. J. Cameron and J. H. van Lint.Designs, Graphs, Codes and their Links. Number 22 in London Mathematical Society Student Texts. Cambridge University Press, 1991. Revised edition of [4].Google Scholar
  6. [6]
    I. Constantinescu and W. Heise. On the concept of code-isomorphy.Journal of Geometry, 57:63–69, 1996.Google Scholar
  7. [7]
    N. G. de Bruijn and P. Erdős. On a combinatorial problem.Indagationes Mathematicae, 10:421–423, 1948.Google Scholar
  8. [9]
    S. W. Golomb and E. C. Posner. Rook domains, latin squares, affine planes, and error- distributing codes.IEEE Transactions on Information Theory, 10:196–208, 1964.Google Scholar
  9. [10]
    W. Heise and P. Quattrocchi. Una puntualizzazione sui piani di Laguerre.Atti Sem. Mat. Fis. Univ. Modena, 27:222–224, 1978.Google Scholar
  10. [11]
    W. Heise and P. Quattrocchi.Informations- und Codierungstheorie. Springer-Verlag, Berlin, 3. Auflage, 1995.Google Scholar
  11. [12]
    W. Heise and H. Seybold. Das Existenzproblem der Möbius-, Laguerre- und Minkowski- Erweiterungen endlicher affiner Ebenen.Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, pages 43–58, 1975. Reprinted in [14], pp. 263–278.Google Scholar
  12. [13]
    G. A. Kabatyanskii and V. I. Levenshtein. Bounds for packings on a sphere and in space.Problems of Information Transmission, 14(1):1–17, 1978. English translation of [8].Google Scholar
  13. [14]
    H. Karzel and K. Sörensen, editors.Wandel von Begriffsbildungen in der Mathematik. Wissenschaftliche Buchgesellschaft Darmstadt, 1984.Google Scholar
  14. [15]
    P. M. Neumann and C. E. Praeger. An inequality for tactical configurations.Bulletin of the London Mathematical Society, 28:471–475, 1996.Google Scholar
  15. [17]
    O. Taussky and J. Todd. Covering theorems for Abelian groups.Ann. Soc. Polonaise de Math., 21:303–305, 1948.Google Scholar
  16. [18]
    P. M. Winkler. Isometric embeddings in products of complete graphs.Discrete Applied Mathematics, 7:221–225, 1984.Google Scholar
  17. [19]
    S. K. Zaremba. A covering theorem for Abelian groups.Journal of the London Mathematical Society (1), 26:71–72, 1951.Google Scholar

Copyright information

© Birkhäuser Verlag 1998

Authors and Affiliations

  • Faina I. Solov'eva
    • 1
  • Thomas Honold
    • 2
  • Sergei V. Avgustinovich
    • 1
  • Werner Heise
    • 2
  1. 1.Sobolev Institute of MathematicsUniversitetsky prospekt 4Russia
  2. 2.Zentrum MathematikTechnische Universität MünchenMünchenGermany

Personalised recommendations