Transformation Groups

, Volume 4, Issue 2–3, pp 273–300

Compactification of symmetric varieties

  • C. De Concini
  • T. A. Springer
Article

Abstract

The symmetric varieties considered in this paper are the quotientsG/H, whereG is an adjoint semi-simple group over a fieldk of characteristic ≠ 2, andH is the fixed point group of an involutorial automorphism ofG which is defined overk. In the casek=C, De Concini and Procesi (1983) constructed a “wonderful” compactification ofG/H. We prove the existence of such a compactification for arbitraryk. We also prove cohomology vanishing results for line bundles on the compactification.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [B] A. Borel et al.,Seminar on Algebraic Groups and Related Finite Groups, Lect. Notes in Math., vol. 131, Springer, second printing, 1986.Google Scholar
  2. [BB] A. Bialynicki-BirulaSome theorems on actions of algebraic groups, Ann. of Math.98 (1973), 480–497.Google Scholar
  3. [BI] M. Brion and S. P. Inamdar,Frobenius splitting of spherical varieties, In: Algebraic Groups and Their Generalizations: Classical Methods (University Park, PA, 1991), 207–218, Proc. Sympos. Pure Math., vol. 56, part 1, Amer. Math. Soc., Providence, RI, 1994.Google Scholar
  4. [CP] C. De Concini and C. Procesi,Complete symmetric varieties, In: Invariant Theory, pp. 1–44, Lect. Notes in Math., vol. 996, Springer, 1983.Google Scholar
  5. [CS] C. De Concini and T. A. Springer,Betti numbers of complete symmetric varieties, In: Geometry Today, pp. 87–107, Birkhäuser, 1985.Google Scholar
  6. [D] S. Donkin,On tilting modules for algebraic groups, Math. Z.212 (1993), no. 1, 39–60.Google Scholar
  7. [F] G. Faltings,Explicit resolution of local singularities of moduli-spaces, J. Reine Angew. Math.483 (1997), 183–196.Google Scholar
  8. [EGA] A. Grothendieck and J. Dieudonné,Eléments de Géométrie Algèbrique I, Publ. Math. I.H.E.S.4 (1960).Google Scholar
  9. [J] J. C. Jantzen,Representations of Algebraic Groups, Pure and Applied Mathematics, vol. 131, Academic Press, Inc., Boston, MA, 1987.Google Scholar
  10. [K] F. Knop,The Luna-Vust theory of spherical embeddings, In: Proceedings of the Hyderabad Conference on Algebraic Groups, pp. 226–249, Madras, 1991.Google Scholar
  11. [MR] V. B. Mehta and A. Ramanathan,Frobenius splitting and cohomology vanishing for Schubert varieties, Ann. of Math. (2)122 (1985), no. 1, 27–40.Google Scholar
  12. [R] R. W. Richardson,Orbits, invariants and representations associated to involutions of reductive groups, Inv. Math.71 (1983), 287–312.Google Scholar
  13. [RS] R. W. Richardson and T. A. Springer,The Bruhat order on symmetric varieties, Geom. Dedic.35 (1990), 389–436.Google Scholar
  14. [Se] J.-P. Serre,Cohomologie Galoisienne, fifth ed., Lect. Notes in Math., vol. 5, Springer, 1994.Google Scholar
  15. [Sp1] T. A. Springer,Some results on algebraic groups with involutions, In: Algebraic Groups and Related Topics, Kinokuniya/North-Holland, 1985, pp. 525–543.Google Scholar
  16. [Sp2] T. A. Springer,The classification of involutions of simple algebraic groups, Journal Fac. Sci. Tokyo University,34 (1987), 655–670.Google Scholar
  17. [Sp3] T. A. Springer,Linear Algebraic Groups, second ed., Birkhäuser, 1998.Google Scholar
  18. [St] E. Strickland,A vanishing theorem for group compactifications, Math. Ann.277 (1987), no. 1, 165–171.Google Scholar
  19. [T] J. Tits,Reductive groups over local fields, in: Automorphic Forms, Representations andL-Groups, vol. I, pp. 29–69, Amer. Math. Soc., 1979.Google Scholar
  20. [U] T. Uzawa,On equivariant completions of algebraic symmetric spaces, In: Algebraic and Topological Theories, Kinokuniya/North-Holland, 1985, pp. 569–577.Google Scholar
  21. [W] A. Weil,The field of definition of a variety, Amer. J. Math.78 (1956), 509–524.Google Scholar

Copyright information

© Birkhäuser 1999

Authors and Affiliations

  • C. De Concini
    • 1
  • T. A. Springer
    • 2
  1. 1.Dipartimento di MatematicaUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Mathematisch InstituutUniversiteit UtrechtUtrechtThe Netherlands

Personalised recommendations