Acta Informatica

, Volume 28, Issue 2, pp 179–186 | Cite as

On characterizations of recursively enumerable languages

  • Michel Latteux
  • Paavo Turakainen
Article

Summary

Geffert has shown that earch recursively enumerable languageL overΣ can be expressed in the formL{h(x)−1g(x)x inΔ+}∩Σ* whereΔ is an alphabet andg, h is a pair of morphisms. Our purpose is to give a simple proof for Geffert's result and then sharpen it into the form where both of the morphisms are nonerasing. In our method we modify constructions used in a representation of recursively enumerable languages in terms of equality sets and in a characterization of simple transducers in terms of morphisms. As direct consequences, we get the undecidability of the Post correspondence problem and various representations ofL. For instance,L =ρ(L0)∩Σ* whereL0 is a minimal linear language and ρ is the Dyck reductionaā→ε, AĀ→ε.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Referneces

  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci.8, 315–332 (1974)Google Scholar
  2. 2.
    Book, R.V., Jantzen, M., Wrathall, C.: Monadic Thue systems. Theor. Comput. Sci.19, 231–251 (1982)Google Scholar
  3. 3.
    Culik, K. II: A purely homomorphic characterization of recursively enumerable sets. J. Assoc. Comput. Math.26, 345–350 (1979)Google Scholar
  4. 4.
    Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages, and representation of recursively enumerable languages. J. Assoc. Comput. Mach.27, 499–518 (1980)Google Scholar
  5. 5.
    Geffert, V.: A representation of recursively enumerable languages by two homomorphisms and a quotient. Theor. Comput. Sci.62, 235–249 (1988)Google Scholar
  6. 6.
    Geffert, V.: Context-free-like forms for the phrase-structure grammars. (Lect. Notes Comput. Sci., vol. 324, pp. 309–317) Berlin Heidelberg New York: Springer 1988Google Scholar
  7. 7.
    Latteux, M., Leguy, J.: On composition of morphisms and inverse morphisms. (Lect. Notes Comput. Sci., vol. 154, pp. 420–432) Berlin Heidelberg New York: Springer 1983Google Scholar
  8. 8.
    Latteux, M., Leguy, J., Ratoandromanana, B.: The family of one-counter languages is closed under quotient. Acta Inf.22, 579–588 (1985)Google Scholar
  9. 9.
    Latteux, M., Timmerman, E.: Bifaithful starry transductions. Inf. Process. Lett.28, 1–4 (1988)Google Scholar
  10. 10.
    Pin, J.E.: Sur le monoide syntactique deL * lorsqueL est un langage fini. Theor. Comput. Sci.7, 211–215 (1978)Google Scholar
  11. 11.
    Salomaa, A.: Formal languages. New York: Academic Press 1973Google Scholar
  12. 12.
    Salomaa, A.: Jewels of Formal Language Theory. Rockville, Maryland: Computer Sience Press, 1981Google Scholar
  13. 13.
    Savitch, W.J.: How to make arbitrary grammars look like context-free grammars. SIAM J. Comput.2, 174–182 (1973)Google Scholar
  14. 14.
    Turakainen, P.: On characterization of recursively enumerable languages in terms of linear languages and VW-grammars. Indagationes Math.40, 145–153 (1978)Google Scholar
  15. 15.
    Turakainen, P.: A machine-oriented approach to compositions of morphisms and inverse morphisms. Bull. EATCS20, 162–166 (1983)Google Scholar
  16. 16.
    Turakainen, P.: Transducers and compositions of morphisms and inverse morphisms. In: Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday. Ann. Univ. Turku. Ser. A I186, 118–128 (1984)Google Scholar
  17. 17.
    Vitányi, P.M.B.: A note on DPDA transductions of {0,1}* and inverse DPDA transductions of the Dyck set. Int. J. Comput. Math.9, 131–137 (1981)Google Scholar
  18. 18.
    Vitányi, P.M.B., Savitch, W.J.: On inverse deterministic pushdown transductions. J. Comput. Syst. Sci.16, 423–444 (1978)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michel Latteux
    • 1
  • Paavo Turakainen
    • 2
  1. 1.CNRS, UA 369, Department of Computer ScienceUniversity of Lille Flandres ArtoisVilleneuve d'AscqFrance
  2. 2.Department of MathematicsUniversity of OuluOuluFinland

Personalised recommendations