Acta Informatica

, Volume 28, Issue 2, pp 179–186 | Cite as

On characterizations of recursively enumerable languages

  • Michel Latteux
  • Paavo Turakainen


Geffert has shown that earch recursively enumerable languageL overΣ can be expressed in the formL{h(x)−1g(x)x inΔ+}∩Σ* whereΔ is an alphabet andg, h is a pair of morphisms. Our purpose is to give a simple proof for Geffert's result and then sharpen it into the form where both of the morphisms are nonerasing. In our method we modify constructions used in a representation of recursively enumerable languages in terms of equality sets and in a characterization of simple transducers in terms of morphisms. As direct consequences, we get the undecidability of the Post correspondence problem and various representations ofL. For instance,L =ρ(L0)∩Σ* whereL0 is a minimal linear language and ρ is the Dyck reductionaā→ε, AĀ→ε.


Information System Direct Consequence Operating System Data Structure Communication Network 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baker, B.S., Book, R.V.: Reversal-bounded multipushdown machines. J. Comput. Syst. Sci.8, 315–332 (1974)Google Scholar
  2. 2.
    Book, R.V., Jantzen, M., Wrathall, C.: Monadic Thue systems. Theor. Comput. Sci.19, 231–251 (1982)Google Scholar
  3. 3.
    Culik, K. II: A purely homomorphic characterization of recursively enumerable sets. J. Assoc. Comput. Math.26, 345–350 (1979)Google Scholar
  4. 4.
    Engelfriet, J., Rozenberg, G.: Fixed point languages, equality languages, and representation of recursively enumerable languages. J. Assoc. Comput. Mach.27, 499–518 (1980)Google Scholar
  5. 5.
    Geffert, V.: A representation of recursively enumerable languages by two homomorphisms and a quotient. Theor. Comput. Sci.62, 235–249 (1988)Google Scholar
  6. 6.
    Geffert, V.: Context-free-like forms for the phrase-structure grammars. (Lect. Notes Comput. Sci., vol. 324, pp. 309–317) Berlin Heidelberg New York: Springer 1988Google Scholar
  7. 7.
    Latteux, M., Leguy, J.: On composition of morphisms and inverse morphisms. (Lect. Notes Comput. Sci., vol. 154, pp. 420–432) Berlin Heidelberg New York: Springer 1983Google Scholar
  8. 8.
    Latteux, M., Leguy, J., Ratoandromanana, B.: The family of one-counter languages is closed under quotient. Acta Inf.22, 579–588 (1985)Google Scholar
  9. 9.
    Latteux, M., Timmerman, E.: Bifaithful starry transductions. Inf. Process. Lett.28, 1–4 (1988)Google Scholar
  10. 10.
    Pin, J.E.: Sur le monoide syntactique deL * lorsqueL est un langage fini. Theor. Comput. Sci.7, 211–215 (1978)Google Scholar
  11. 11.
    Salomaa, A.: Formal languages. New York: Academic Press 1973Google Scholar
  12. 12.
    Salomaa, A.: Jewels of Formal Language Theory. Rockville, Maryland: Computer Sience Press, 1981Google Scholar
  13. 13.
    Savitch, W.J.: How to make arbitrary grammars look like context-free grammars. SIAM J. Comput.2, 174–182 (1973)Google Scholar
  14. 14.
    Turakainen, P.: On characterization of recursively enumerable languages in terms of linear languages and VW-grammars. Indagationes Math.40, 145–153 (1978)Google Scholar
  15. 15.
    Turakainen, P.: A machine-oriented approach to compositions of morphisms and inverse morphisms. Bull. EATCS20, 162–166 (1983)Google Scholar
  16. 16.
    Turakainen, P.: Transducers and compositions of morphisms and inverse morphisms. In: Studies in honour of Arto Kustaa Salomaa on the occasion of his fiftieth birthday. Ann. Univ. Turku. Ser. A I186, 118–128 (1984)Google Scholar
  17. 17.
    Vitányi, P.M.B.: A note on DPDA transductions of {0,1}* and inverse DPDA transductions of the Dyck set. Int. J. Comput. Math.9, 131–137 (1981)Google Scholar
  18. 18.
    Vitányi, P.M.B., Savitch, W.J.: On inverse deterministic pushdown transductions. J. Comput. Syst. Sci.16, 423–444 (1978)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Michel Latteux
    • 1
  • Paavo Turakainen
    • 2
  1. 1.CNRS, UA 369, Department of Computer ScienceUniversity of Lille Flandres ArtoisVilleneuve d'AscqFrance
  2. 2.Department of MathematicsUniversity of OuluOuluFinland

Personalised recommendations