Transformation Groups

, Volume 5, Issue 1, pp 3–20 | Cite as

Another proof of Joseph and Letzter's separation of variables theorem for quantum groups

  • P. Baumann


Let g be a simple finite-dimensional complex Lie algebra and letG be the corresponding simply-connected algebraic group. A theorem of Kostant states that the universal enveloping algebra of g is a free module over its center. A theorem of Richardson states that the algebra of regular functions ofG is a free module over the subalgebra of regular class functions. Joseph and Letzter extended Kostant's theorem to the case of the quantized enveloping algebra of g. Using the theory of crystal bases as the main tool, we prove a quantum analogue of Richardson's theorem. From it, we recover Joseph and Letzter's result by a kind of “quantum duality principle”.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BS] P. Baumann, F. Schmitt,Classification of bicovariant differential calculi on quantum groups (a representation-theoretic approach), Commun. Math. Phys.194 (1998), 71–86.Google Scholar
  2. [Ca1] P. Caldero,Eléments ad-finis de certains groupes quantiques, C. R. Acad. Sci. Paris Sér. I Math.316 (1993), 327–329.Google Scholar
  3. [Ca2] P. CalderoOn harmonic elements for semi-simple Lie algebras, preprint Université Lyon I, 1999.Google Scholar
  4. [DKP] C. De Concini, V. G. Kac, and C. Procesi,Quantum coadjoint action, J. Amer. Math. Soc.5 (1992), 151–189.Google Scholar
  5. [Dr1] V. G. Drinfeld,Quantum groups, in Proceeding of the International Congress of Mathematicians (Berkeley, CA, 1986, A. M. Gleason, ed.), 798–820; American Mathematical Society, Providence, RI, 1987.Google Scholar
  6. [Dr2] В. Г. Дринфельд, О почми кокоммумамивных алгебрах Хопфа Алгебра и Анализ1 (1989), 30–46. English translation: V. G. Drinfeld,On almost cocommutative Hopf algebras Leningrad Math. J.1 (1990), 321–342.Google Scholar
  7. [Jo] A. Joseph,Quantum Groups and Their Primitive Ideals, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 29, Springer-Verlag, Heidelberg, 1995.Google Scholar
  8. [JL] A. Joseph and G. Letzter,Separation of variables for quantized enveloping algebras, Amer. J. Math.116 (1994), 127–177.Google Scholar
  9. [Li] P. LittelmannA Littlewood-Richardson rule for symmetrizable Kac-Moody algebras, Invent. Math.116 (1994), 329–346.Google Scholar
  10. [KK] S.-J. Kang, M. Kashiwara, K. C. Misra, T. Miwa, T. Nakashima, and A. Nakayashiki,Affine crystals and vertex models, in Infinite analysis (Kyoto, 1991, A. Tsuchiya, T. Eguchi, and M. Jimbo, eds.), Part A, 449–484; Adv. Ser. Math. Phys., vol. 16, World Scientific Publishing, River Edge, NJ, 1992.Google Scholar
  11. [Ka1] M. Kashiwara,On crystal bases of the Q-analogue of universal enveloping algebras, Duke Math. J.63 (1991), 465–516.Google Scholar
  12. [Ka2] M. Kashiwara,Crystal bases of modified quantized enveloping algebra, Duke Math. J.73 (1994), 383–413.Google Scholar
  13. [Ka3] M. Kashiwara,On crystal bases, in Representations of groups Banff, AB, 1994, B. N. Allison and G. H. Cliff, eds.), 155–197; CMS Conference Proceedings, vol. 16, American Mathematical Society, Providence, RI, 1995.Google Scholar
  14. [Ko] B. Kostant,Lie group representations on polynomial rings, Amer. J. Math.85 (1963), 327–404.Google Scholar
  15. [Ma] S. Majid,Braided matrix structure of the Sklyanin algebra and of the quantum Lorentz group, Commun. Math. Phys.156 (1993), 607–638.Google Scholar
  16. [RS] N. Yu. Reshetikhin and M. A. Semenov-Tian-Shansky,Quantum R-matrices and factorization problems, J. Geom. Phys.5 (1988), 533–550.Google Scholar
  17. [Ri] R. W. Richardson,The conjugating representation of a semisimple group, Invent. Math.54, (1979), 229–245.Google Scholar
  18. [Ro] M. Rosso,Représentations des groupes quantiques, Séminaire Bourbaki no. 744, Astérisque201–202–203 (1991), 443–483.Google Scholar
  19. [Sw] M. E. Sweedler,Hopf Algebras, Mathematics Lecture Note Series, Benjamin, New York, 1969.Google Scholar

Copyright information

© Birkhäuser 2000

Authors and Affiliations

  • P. Baumann
    • 1
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et CNRSStrasbourg CedexFrance

Personalised recommendations