Archiv der Mathematik

, Volume 11, Issue 1, pp 223–236 | Cite as

Confluent forms of certain non-linear algorithms

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. Rutishauser, Ein kontinuierliches Analogon zum Quotienten-Differenzen-Algorithmus. Arch. Math.5, 132–137 (1954).Google Scholar
  2. [2]
    H. Rutishauser, Der Quotienten-Differenzen-Algorithmus. Birkhäuser Verlag, Basel/Stuttgart 1957.Google Scholar
  3. [3]
    F. L. Bauer, The g-algorithm. J. Soc. Indust. Appl. Math.8, 1–17 (1960).Google Scholar
  4. [4]
    P. Wynn, On a Device for computing thee m (S n) Transformation. MTAC.10, 91–96 (1956).Google Scholar
  5. [5]
    F. L.Bauer, Connections between the q-d algorithm ofRutishauser and theɛ-algorithm ofWynn. A technical report prepared under the sponsorship of the Deutsche Forschungsgemeinschaft, project number Ba/106, Nov. 1957.Google Scholar
  6. [6]
    D. Shanks, Non-linear Transformations of Divergent and Slowly Convergent Sequences. J. Math. Phys.34, 1–42 (1955).Google Scholar
  7. [7]
    P. Wynn, On a Procrustean Technique for the Numerical Transformation of Slowly Convergent Sequences and Series. Proc. Camb. Phil. Soc.52, 663–671 (1956).Google Scholar
  8. [8]
    N. E.Nörlund, Vorlesungen über Differenzenrechnung. Berlin 1924.Google Scholar

Copyright information

© Birkhäuser Verlag 1960

Authors and Affiliations

  • P. Wynn
    • 1
  1. 1.Mainz

Personalised recommendations