Archiv der Mathematik

, Volume 11, Issue 1, pp 218–222 | Cite as

An integral formula for total gradient variation

  • Wendell H. Fleming
  • Raymond Rishel


Integral Formula Gradient Variation Total Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    H. Federer, Curvature measures. Trans. Amer. Math. Soc.93, 418–491 (1959).Google Scholar
  2. [2]
    H.Federer and W. H.Fleming, Normal and integral currents. Ann. of Math. (to appear).Google Scholar
  3. [3]
    W. H.Fleming, Functions whose partial derivatives are measures. Illinois J.Math. (to appear).Google Scholar
  4. [4]
    E. De Giorgi, Su una teoria generale della misura (r−1) dimensionale in uno spazio adr dimensioni. Ann. Mat. pura appl., IV. Ser.36, 191–213 (1954).Google Scholar
  5. [5]
    K. Krickeberg, Distributionen, Funktionen beschränkter Variation, und Lebesguescher Inhalt nichtparametrischer Flächen. Ann. Mat. pura appl., IV. Ser.44, 105–134 (1957).Google Scholar
  6. [6]
    A. S. Kronrod, On functions of two variables. Uspeci Mat. Nauk5, 24–134 (1950).Google Scholar
  7. [7]
    L. C.Young, Partial area I. (to appear).Google Scholar

Copyright information

© Birkhäuser Verlag 1960

Authors and Affiliations

  • Wendell H. Fleming
    • 1
  • Raymond Rishel
    • 1
  1. 1.Brown UniversityR.I.USA

Personalised recommendations