Integral Equations and Operator Theory

, Volume 34, Issue 2, pp 165–186 | Cite as

The Weyl group and the normalizer of a conditional expectation

  • M. Argerami
  • D. Stojanoff


We define a discrete groupW(E) associated to a faithful normal conditional expectationE : M → N forNM von Neuman algebras. This group shows the relation between the unitary groupUN and the normalizerNE ofE, which can be also considered as the isotropy of the action of the unitary groupUM ofM onE. It is shown thatW(E) is finite if dimZ(N)<∞ and bounded by the index in the factor case. Also sharp bounds of the order ofW(E) are founded.W(E) appears as the fibre of a covering space defined on the orbit ofE by the natural action of the unitary group ofM. W(E) is computed in some basic examples.

AMS Classification Numbers

46L10 46L99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. Andruchow, A. R. Larotonda, L. Recht and D. Stojanoff; Infinite dimensional homogeneous reductive spaces and finite index conditional expectations, Illinois J. of Math 41-1 (1997), 54–76.Google Scholar
  2. [2]
    E. Andruchow, D. Stojanoff, “Geometry of conditional expectations and finite index”, Int. Journal of Math. 5 (1994), 169–178.Google Scholar
  3. [3]
    E. Andruchow, D. Stojanoff, “Conditional expectations with finite weak index”, preprint (1995).Google Scholar
  4. [4]
    J. Baillet, I. Denizeau, J.F. Havet, “Indice d'une Esperance Conditionelle”, Comp. Math 66(1988), 199–236.Google Scholar
  5. [5]
    Combes, Delaroche, “Groupe modulaire d'une esperance conditionnelle dans une algebre de von Neumann”, Bull. Soc. Math. France 13 (1975), 385–426.Google Scholar
  6. [6]
    A. Connes, “Classification of type III factors”, Ann. Ec. Norm. Sup, 1973.Google Scholar
  7. [7]
    M. Frank, E. Kirchberg, “On conditional expectations of finite index”, preprint (1995), private communication.Google Scholar
  8. [8]
    F.M. Goodman, P. de la Harpe, V.F.R. Jones, “Coxeter Graphs and Towers of Algebras”, Math. Sciences Research Institute Publications 14, Springer-Verlag.Google Scholar
  9. [9]
    J.-F. Havet, “Esperance conditionelle minimale”, J. Oper. Th. 24 (1990), 33–55.Google Scholar
  10. [10]
    M. Izumi, “Goldman's type theorem for index 3”, Publ. Res. Inst. Math. Sci. 28, No. 5, 833–843 (1992).Google Scholar
  11. [11]
    V.F.R. Jones, “Index for subfactors”, Invent. Math., 72 (1983), 1–25.Google Scholar
  12. [12]
    R. Kadison, John R. Ringrose, “Fundamentals of the Theory of Operator Algebras”, II, Academic Press, New York 1986.Google Scholar
  13. [13]
    H. Kosaki, “Extension of Jones theory on index to arbitrary factors”, J. Funct. Anal. 66 (1986), 123–140.Google Scholar
  14. [14]
    H. Kosaki, “Characterization of Crossed Product (Properly Infinite Case)”, Pacific J. of Math., 137 (1989) No. 1, 159–167.Google Scholar
  15. [15]
    A. Larotonda, L. Recht, “The orbit of a conditional expectation as a reductive homogeneous space”, Monteiro, Luiz (ed.), Homage to Dr. Rodolfo A. Ricabarra. Bahia Blanca: Univ. Nacional del Sur, 61–73 (1995).Google Scholar
  16. [16]
    R. Longo, “Index of subfactors and statistics of quantum fields I and II”, Comm. Math. Phys. 126 (1989), 217–247, 130 (1990), 285–309.Google Scholar
  17. [17]
    M. Pimsner, S. Popa, “Entropy and index for subfactors”, Ann. scient. Ec. Norm. Sup., 4ta serie, 19 (1986), 57–106.Google Scholar
  18. [18]
    S. Popa, “Classification of subfactors and their endomorphisms”, AMS series CBMS Vol 86 (1995).Google Scholar
  19. [19]
    M. Takesaki, “Conditional expectations in von Neumann algebras”, J. Funct. Anal. 9, 306–321 (1972).Google Scholar
  20. [20]
    S. Watatani, “Jones Index for C* Algebras”, Memoirs AMS 83 No 424 (1990).Google Scholar

Copyright information

© Birkhäuser Verlag 1999

Authors and Affiliations

  • M. Argerami
    • 1
  • D. Stojanoff
    • 2
  1. 1.Dpto. de Matemática Fac. Cs. ExactasUNLPLa PlataArgentina
  2. 2.Instituto Argentino de MatemáticaBuenos AiresArgentina

Personalised recommendations