Acta Mechanica

, Volume 49, Issue 3–4, pp 281–285

Longitudinal and torsional oscillations of a rod in a non-Newtonian fluid

  • K. R. Rajagopal
Notes

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Stokes, G. G.: On the effect of the rotation of cylinders and spheres about their own axes in increasing the logarithmic decrement of the are of vibration. (Mathematical and Philosophical Papers5.) Cambridge: Cambridge University Press 1886.Google Scholar
  2. [2]
    Casarella, M. J., Laura, P. A.: Drag on an oscillating rod with longitudinal and torsional motion. J. Hydronautics,3, 180–183 (1969).Google Scholar
  3. [3]
    Tanner, R. I.: Plane creeping flows of incompressible second order fluids. Physics of Fluids9, 1246–1248 (1966).Google Scholar
  4. [4]
    Huilgol, R. R.: On uniqueness and nonuniqueness in the plane creeping flows of second-order fluids. SIAM J. Appl. Math.24, 226–233 (1976).Google Scholar
  5. [5]
    Fosdick, R. L., Rajagopal, K. R.: Uniqueness and drag for fluids of second grade in steady motion. Int. J. Non-Linear Mech.13, 131–137 (1978).Google Scholar
  6. [6]
    Fosdick, R. L., Truesdell, C.: Universal flows in the simplest theories of fluids. Annali Della Normale Superiore di Pisa, serie IV,4, 323–341 (1977).Google Scholar
  7. [7]
    Rajagopal, K. R., Gupta, A. S.: On a class of exact solutions to the equations of motion of a second grade fluid. Intl. J. Eng. Science19, 1009–1014 (1981).Google Scholar
  8. [8]
    Rajagopal, K. R., Gupta, A. S.: Flow and stability of a second grade fluid between two parallel plates rotating about noncoincident axes. Intl. J. Eng. Science19, 1401–1409 (1981).Google Scholar
  9. [9]
    Rajagopal, K. R., Gupta, A. S.: Flow and stability between two parallel rotating plates. Archiwum Mechaniki Stosowanej (in press).Google Scholar
  10. [10]
    Rajagopal, K. R.: The flow of a second order fluid between rotating parallel plates. J. of Non-Newtonian Fluid Mech.9, 185–190 (1981).Google Scholar
  11. [11]
    Dunn, J. E.: On the impossibility of Jeffery-Hamel flows of simple fluids. Proceedings of the SECTAM meeting, Huntsville, Alabama, 1981.Google Scholar
  12. [12]
    Rajagopal, K. R., Gupta, A. S.: An exact solution for the flow of a non-Newtonian fluid past a porous plate. Meccanica (submitted for publication).Google Scholar
  13. [13]
    Beard, D. W., Walters, K.: Elastico-viscous boundary layer flows. Proc. Comb. Phil. Soc.60, 667–674 (1967).Google Scholar
  14. [14]
    Coleman, B. D., Noll, W.: An approximation theorem for functionals, with applications in continuum mechanics. Arch. Ratl. Mech. Anal.56, 191–252 (1960).Google Scholar
  15. [15]
    Rivlin, R. S., Ericksen, J. L.: Stress deformation relation for isotropic materials. J. Ratl. Mech. Anal.4, 323–425 (1955).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • K. R. Rajagopal
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of PittsburghPittsburghUSA

Personalised recommendations