Advertisement

Acta Mechanica

, Volume 49, Issue 3–4, pp 201–208 | Cite as

Unsteady flow with attenuation in a fluid filled elastic tube with a stenosis

  • A. Ramachandra Rao
Contributed Papers

Summary

An equation governing the excess pressure has been derived, for an axially tethered and stenosed elastic tube filled with viscous liquid, by introducing the elasticity of the tube through pressure-area relation. This equation is solved numerically for large Womersley parameter and the results are presented for different types of pressure-radius relations and geometries by prescribing an outgoing wave suffering attenuation at some axial point of the tube. For a locally constricted tube it is observed that the pressure oscillates more and generates sound on the down stream side of the constriction.

Keywords

Attenuation Dynamical System Fluid Dynamics Transport Phenomenon Unsteady Flow 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Gerrard, J. H., Taylor, L. A.: Mathematical model representing blood flow in arteries. Med. & Biol. Eng. & Comput.15, 611–617 (1977).Google Scholar
  2. [2]
    Gerrard, J. H.: The effect of the skin friction on the solution of the one dimensional equations of pulsatile flow in distensible tubes. Med. & Biol. Eng. & Comput.19, 79–82 (1981).Google Scholar
  3. [3]
    Kurz, W.: Nichtstationäre Strömung in elastischen Modellen arterieller Gefäße. Doctoral Dissertation, RWTH Aachen, 1980.Google Scholar
  4. [4]
    Lighthill, J.: Waves in fluids. Cambridge University Press 1978.Google Scholar
  5. [5]
    Ling, S. C., Atabek, H. B.: A non-linear analysis of pulsatile flow in arteries. J. Fluid Mech.55, 493–511 (1972).Google Scholar
  6. [6]
    Morgan, G. W., Kiely, J. P.: Wave propagation in a viscous liquid contained in a flexible tube. J. Acoust. Soc. Amer.26, 323–328 (1954).Google Scholar
  7. [7]
    Olsen, J. L., Shapiro, A. H.: Large amplitude unsteady flow in a liquid filled elastic tubes. J. Fluid Mech.29, 513–538 (1967).Google Scholar
  8. [8]
    Pedley, T. J.: The fluid mechanics of large blood vessels. Cambridge University Press 1980.Google Scholar
  9. [9]
    Ramachandra Rao, A.: Oscillatory flow in an elastic tube of variable cross section. Acta Mechanica46, 155–165 (1983).Google Scholar
  10. [10]
    Ramachandra Rao, A.: Mathematical models of blood flow in arterial stenosis. Proc. Symposium on Mathematical Modelling (July 19–20) MRI, Allahabad (1982).Google Scholar
  11. [11]
    Rudinger, G.: Review of current mathematical methods for the analysis of blood flow. Proc. Biomed. Fluid Mechs. Symposium ASME, New York, 1966.Google Scholar
  12. [12]
    Streeter, V. L., Keitzer, W. F., Bohr, D. F.: Energy dissipation in pulsatile flow through distensible tapered vessels, in: Pulsatile blood flow (Attinger, E. O., ed.), pp. 149–177. New York: McGraw-Hill.Google Scholar
  13. [13]
    Taylor, L. A., Gerrard, J. H.: Pressure-radius relationships for elastic tubes and their application to arteries: Part 1—Theoretical relationships; Part 2—A comparison of theory and experiment for a rubber tube. Med. & Biol. Eng. & Comput.15, 11–21 (1977).Google Scholar
  14. [14]
    Tomm, D.: Strömung Geräusch in verengten und verzweigten Gefäßen. Doctoral Dissertation, RWTH Aachen, 1978.Google Scholar
  15. [15]
    Womersley, J. R.: An elastic tube theory of pulse transmission and oscillatory flow in mammalian arteries. WADC Tech. Rep. 56-614, 1957.Google Scholar
  16. [16]
    Zeller, H., Reinecke, J.: Geräuschentwicklung in arteriellen Gefäßverengungen. Abhandlungen, Aerodyn. Institut der RWTH Aachen, Heft 24, 7–13 (1980).Google Scholar

Copyright information

© Springer-Verlag 1983

Authors and Affiliations

  • A. Ramachandra Rao
    • 1
  1. 1.Department of Applied MathematicsIndian Institute of ScienceBangaloreIndia

Personalised recommendations