Advertisement

On inversive maximal period polynomials over finite fields

  • Wun Seng Chou
Article

Abstract

Over finite field GF(q) withq a power of an odd primep, we characterize inversive maximal period polynomials in terms of polynomials of orderq + 1, and then we study some properties of polynomials of orderq + 1.

Keywords

Finite Field Polynomial Pseudorandon Number Recurring Sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number generator. Statist. papers27, 315–326 (1986)Google Scholar
  2. 2.
    Flahive, M., Niederreiter, H.: On inversive congruential generators for pseudorandom numbers. Finite Fields, Coding Theory, and Advances in Communications and Computing, Mullen, G., Shiue, P. (eds.), pp. 75–80. New York: Dekker 1992Google Scholar
  3. 3.
    Lidl, R., Niederreiter, H.: Finite Fields. Reading, MA: Addison-Wesley 1983Google Scholar
  4. 4.
    Niederreiter, H.: Finite fields and their applications. Contributions to General Algebra 7, pp. 251–264. Vienna 1990, Teubner, Stuttgart, Germany 1991Google Scholar
  5. 5.
    Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Philadelphia: SIAM 1992Google Scholar
  6. 6.
    Niederreiter, H.: Nonlinear methods for pseudorandom number and vector generation, in Simulation and Optimization. Pflug, G., Dieter, U. (eds.), Lecture Notes in Economics and Math. Systems, Vol. 374, pp. 145–153. Berlin, Heidelberg, New York: Springer 1992Google Scholar
  7. 7.
    Niederreiter, H.: Finite fields, pseudorandom numbers, and quasirandom points. Finite Fields, Coding Theory, and Advances in Communications and Computing. Mullen, G., Shiue, P. (eds), pp. 375–394. New York: Dekker 1992Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Wun Seng Chou
    • 1
  1. 1.Institute of MathematicsAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations