Archiv der Mathematik

, Volume 14, Issue 1, pp 317–322 | Cite as

On the classical Tauberian theorems

  • William Feller


Tauberian Theorem Classical Tauberian Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    J. L. Doob, Relative limit theorems in analysis. J. Anal. Math.8, 289–306 (1960/61).Google Scholar
  2. [2]
    J. Karamata, Sur un mode de croissance régulière des fonctions. Mathematica (Cluj)4, 38–53 (1930).Google Scholar
  3. [3]
    H. König, Neuer Beweis eines klassischen Tauber-Satzes. Arch. Math.11 278–279 (1960).Google Scholar
  4. [4]
    D. V.Widder, The Laplace transform. Princeton 1946.Google Scholar

Copyright information

© Birkhäuser Verlag 1963

Authors and Affiliations

  • William Feller
    • 1
  1. 1.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations