Advertisement

Archives of Toxicology

, Volume 60, Issue 4, pp 293–299 | Cite as

Metabolic changes following oral exposure to tetrachloroethylene in subtoxic concentrations

  • Egon Marth
Original Investigations

Abstract

Mice were exposed to very small quantities of Per (0.05 and 0.1 mg Per/kg body weight per day) administered orally for 7 weeks. It was shown that Per was transported through the body by two separate mechanisms and was finally stored in the adipose tissue. On the one hand, Per reaches the interior of the membranes of red blood cells, leading to changes in the entire erythropoietic system. The membranes of the red blood cells are destroyed prematurely and its fragments are increasingly phagocytized in the spleen. The result is a high level of Per stored in the spleen. The increase in haemolysis was also demonstrated by showing an increase in LDH activity and the accumulation of haemosiderin in the macrophages in the spleen. Only 8 weeks following discontinuation of Per, these changes were reversible. On the other hand, Per is also transported with the chylomicrons. Since the lipoprotein lipase is inhibited by Per, these molecules are broken down to a lesser degree. The concentration of triglycerides (the major component of the chylomicrons) in the serum was elevated, and the chylomicrons were increasingly integrated into the adipose tissue, Per also reached this depot fat. It took as long as 16 weeks after discontinuation of Per until these changes were fully reversed and the experimental mice no longer differed from those in the control group.

Key words

Perchloroethylene Lipoproteinmetabolism Chylomicrons Red blood cells Erythropoiesis 

Abbreviations

Per

Perchloroethylene (1,1,2,2-tetrachloroethylene)

SGPT

serum glutamate-pyruvate-transaminase

TCA

trichloroacetic acid

TCE

trichloroethanol

NAD

nicotinamide adenine dinucleotide

PBS

phosphate buffered saline

LDH

lactate dehydrogenase

LDL

low density lipoproteins

VLDL

very low density lipoproteins

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andersen ME (1981) Saturable metabolism and its relationship to toxicity. CRC Crit Rev Toxicol 9: 105–149Google Scholar
  2. Andersen ME, Gargas ML, Jones RA, Jenkins LJ (1980) Determination of the kinetic constants for metabolism of inhaled toxicans in vivo using gas uptake measurements. Toxicol Appl Pharmacol 54: 100–116PubMedGoogle Scholar
  3. Bauer U (1981) Belastungen des Menschen durch Schadstoffe der Umwelt — Untersuchungen über leicht flüchtige organische Halogenverbindungen in Wasser, Luft, Lebensmitteln und im menschlichen Gewebe. I-IV. Zbl. Bak Hyg, I. Abt Orig B 174: 15–583Google Scholar
  4. Bolt HM, Buchter A, Wolowski L, Gil DL, Bolt W (1977) Incubation of14C-trichloroethylene vapor with rat liver microsomes: Uptake of radioactivity and covalent protein binding of metabolites. Int Arch Occup Environ Health 39: 103–111PubMedGoogle Scholar
  5. Bolt HM, Filser JG (1977) Irreversible binding of chlorinated ethylenes to macromolecules. Environ Health Perspect 21: 107–112PubMedGoogle Scholar
  6. Brown BR, Vandam LDA (1976) Review of current advances in metabolism of inhalation anesthetics. Ann NY Acad Sci 247: 235–243Google Scholar
  7. Browning E (1965) Trichloroethylene and terachloroethylene. In: Toxicity and metabolism of industrial solvents. Elsevier, Amsterdam, LondonGoogle Scholar
  8. Buben JA, O'Flaherty E (1985) Delineation of the role of metabolism in the hepatotoxicity of trichloroethylene and perchloroethylene: A dose-effect study. Toxicol Appl Pharmacol 54: 105–122Google Scholar
  9. Daniel JW (1963) The metabolism of36C1-labelled trichloroethylene and terachloroethylene in the rat. Biochem Pharmacol 12: 795–802PubMedGoogle Scholar
  10. Gehring P (1968) Hepatotoxic potency of various chlorinated hydrocarbons relative to their narcotic and lethal potencies in mice. Toxicol Appl Pharmacol 13: 287–298PubMedGoogle Scholar
  11. Gether J, Lunde G (1975) Determination of tetrachloroethylene residues in defatted meals. Lebensm Wiss u Technol 8: 183–184Google Scholar
  12. Giger W, Molnar-Kubica E (1978) Tetrachloroethylene in contaminated ground and drinking waters. Bull Environ Contam Toxicol 19: 475–480PubMedGoogle Scholar
  13. Gray E (1976) Assessment of hepatotoxic potential. Environ Health Perspect 15: 47–54PubMedGoogle Scholar
  14. Green T, Prout MS (1985) Species differences in response to trichloroethylene. II. Biotransformation in rats and mice. Toxicol Appl Pharmacol 79: 401–411PubMedGoogle Scholar
  15. Hartmetz G, Borneff J, Borneff M (1985) Vorkommen leichtflüchtiger Chlorkohlenwasserstoffe in Trinkwässern von Rheinland-Pfalz. Forum Städte-Hygiene 36: 316–319Google Scholar
  16. Henschler D, Bonse G (1977) Metabolic activation of chlorinated ethylenes: Dependence of mutagenic effect on electrophilic reactivity of the metabolically formed epoxides. Arch Toxicol 39: 7–12PubMedGoogle Scholar
  17. IARC (1979) Monographs on the evaluation of the carcinogenic risk of chemical to humans. IARC Lyon 20: 491–514Google Scholar
  18. Ikeda M, Ohtsuji H, Imamura T, Komoike Y (1972) Urinary excretion of total trichloro-compounds, trichloroethanol, and trichloroacetic acid as a measure of exposure to trichloroethylene and tetrachloroethylene. Br J Ind Med 29: 328–333PubMedGoogle Scholar
  19. Klein G, Gromadies B, Bürger A, Scheunert E, Rittner G (1981) Langzeitwirkungen von Schwefelkohlenwasserstoff und Halogen-kohlenwasserstoffen, besonders Perchlorethylen, auf den Lipidstoffwechsel. 7 Ges Hyg 27: 48–51Google Scholar
  20. Kostner GM (1983) Apolipoproteins and lipoproteins of human plasma: Significance for health and diseases. Adv Lipid Res 20: 1–44PubMedGoogle Scholar
  21. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265–275PubMedGoogle Scholar
  22. Marth E, Stünzner D, Binder H, Möse JR (1985a) Tetrachlorethylen — Eine Studie über die Wirkung niedriger Konzentrationen von 1,1,2,2-Tetrachlorethylen (Perchlorethylen) am Organismus der Maus. I. Laborchemische Untersuchungen. Zbl Bakt Hyg, I. Abt Orig B 181: 525–540Google Scholar
  23. Marth E, Stünzner D, Binder H, Möse JR (1985b) Tetrachlorethylen — Eine Studie über die Wirkung niedriger Konzentrationen von 1,1,2,2-Tetrachlorethylen (Perchlorethylen) am Organismus der Maus. II. Rückstandsuntersuchungen von Tetrachlorethylen in verschiedenen Organen und Nachweis von histologischen Veränderungen der untersuchten Organe. Zbl Bak Hyg, I. Abt Orig B 181: 541–547Google Scholar
  24. Marth E, Stünzner D, Binder H, Möse JR (1986) Perchlorethylen und der Lipoproteinstoffwechsel der Maus. Hyg Med 11: 244–246Google Scholar
  25. Möse JR, Wilfinger G, Zeichen R (1985) Trinkwasserverunreinigung durch Perchlorethylen. Zbl Bakt Hyg, I. Abt Orig B 181: 111–120Google Scholar
  26. Munro IC (1977) Consideration in chronic toxicity testing: The chemical, the dose, the design. J Environ Pathol Toxicol 1: 183–197PubMedGoogle Scholar
  27. National Cancer Institute (1977) Bioassay of tetrachloroethylene for possible carcinogenesis. DHEW Publ No (NIH) 77-813Google Scholar
  28. Pegg DG, Zempel A, Braun WH, Watanabe PG (1979) Disposition of tetrachloro (14C)ethylene following oral and inhalation exposure in rats. Toxicol Appl Pharmacol 51: 465–474PubMedGoogle Scholar
  29. Prout MS, Provan WM, Green T (1985) Species differences in response to trichloroethylene. I. Pharmacokinetics in rats and mice. Toxicol Appl Pharmacol 79: 389–400PubMedGoogle Scholar
  30. Ratnoff WD, Gress RE (1980) The familial occurence of polycythemia vera: Report of a father and son, with consideration of the possible etiologic role of exposure to organic solvents, including tetrachloroethylene. Blood 56: 233–236PubMedGoogle Scholar
  31. Reddy JK, Azarnoff DL, Hignite CE (1980) Hypolipidemic hepatic peroxisome proliferators form a novel class of chemical carcinogens. Nature (London) 283: 397–398Google Scholar
  32. Reichert D (1983) Biological actions and interactions of tetrachloroethylene. Mutat Res 123: 411–429PubMedGoogle Scholar
  33. Sokal R, Rohlf J (1969) Biometrics. Freeman, San Francisco, pp 235–246Google Scholar
  34. Steward RD, Dodd HC (1964) Absorption of carbon tetrachloride, trichloroethylene, tetrachlorethylene, methylene chloride and 1,1,1 trichloroethane through the human skin. Am Ind Hyg Assoc J 25: 439PubMedGoogle Scholar
  35. Zimmerli B, Zimmermann H, Müller F (1982) Perchlorethylen in Lebensmitteln. Mitt Gebiete Lebensm Hyg 73: 71–81Google Scholar

Copyright information

© Springer-Verlag 1987

Authors and Affiliations

  • Egon Marth
    • 1
  1. 1.Institute of HygieneUniversity of GrazGrazAustria

Personalised recommendations