Transformation Groups

, Volume 2, Issue 1, pp 57–89 | Cite as

The finite irreducible linear groups with polynomial ring of invariants

  • G. Kemper
  • G. Malle


We prove the following result: LetG be a finite irreducible linear group. Then the ring of invariants ofG is a polynomial ring if and only ifG is generated by pseudoreflections and the pointwise stabilizer inG of any nontrivial subspace has a polynomial ring of invariants. This is well-known in characteristic zero. For the case of positive characteristic we use the classification of finite irreducible groups generated by pseudoreflections due to Kantor, Wagner, Zalesskiî and Serežkin. This allows us to obtain a complete list of all irreducible linear groups with a polynomial ring of invariants.


Complete List Topological Group Linear Group Positive Characteristic Polynomial Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    D. J. Benson,Polynomial Invariants of Finite Groups, LMS Lecture Notes Series, vol. 190, Cambridge University Press, Cambridge,1993.Google Scholar
  2. [2]
    N. Bourbaki,Groupes et Algèbres de Lie, IV, V, VI, Hermann, Paris, 1968.Google Scholar
  3. [3]
    D. Carlisle and P. H. Kropholler,Rational invariants of certain orthogonal and unitary groups, Bull. London Math. Soc.24 (1992), 57–60.Google Scholar
  4. [4]
    D. Carlisle and P.H. Kropholler,Modular invariants of finite symplectic groups, preprint (1992).Google Scholar
  5. [5]
    C. Chevalley,Invariants of finite groups generated by reflections, Amer. J. Math77 (1955), 778–782.Google Scholar
  6. [6]
    A. M. Cohen,Finite complex reflection groups, Ann. Scient. Éc. Norm. Sup.9 (1976), 379–436.Google Scholar
  7. [7]
    J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson,Atlas of Finite Groups, Clarendon Press, Oxford, 1985.Google Scholar
  8. [8]
    M. Demazure,Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math.21 (1973), 287–301.Google Scholar
  9. [9]
    L. E. Dickson,A fundamental system of invariants of the general modular linear group with a solution of the form problem, Trans. Amer. Math. Soc.12 (1911), 75–98.Google Scholar
  10. [10]
    G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR,a Computer Algebra System for Singularity Theory, Algebraic Geometry and Commutative A Algebra, Universität Kaiserslautern, Germany.Google Scholar
  11. [11]
    V. Kac, K. Watanabe,Finite linear groups whose ring of invariants is a complete intersection, Bull. Amer. Math. Soc.6 (1982), 221–223.Google Scholar
  12. [12]
    W. Kantor,Subgroups of classical groups generated by long root elements, Trans. Amer. Math. Soc.248 (1979), 347–379.Google Scholar
  13. [13]
    G. Kemper,A constructive approach to Noether's problem, Manuscripta Math.90 (1996), 343–363.Google Scholar
  14. [14]
    G. Kemper,Calulating invariant rings of finite groups over arbitrary fields, J. Symbolic Computation21 (1996), 351–366.Google Scholar
  15. [15]
    H. Nakajima,Invariants of finite groups generated by pseudoreflections in positive characteristic, Tsukuba J. Math.3 (1979), 109–122.Google Scholar
  16. [16]
    M. Schönert (editor), GAP—Groups, Algorithms, and Programming, fourth ed., Lehrstuhl D für Mathematik, RWTH Aachen, Germany, 1994.Google Scholar
  17. [17]
    J.-P. Serre,Groupes finis d'automorphismes d'anneaux locaux réguliers, Colloque d'Algèbre ENSJF, Paris, 1967, pp. 8-01–8-11.Google Scholar
  18. [18]
    G. C. Shephard and J. A. Todd,Finite unitary reflection groups, Canad. J. Math.6 (1954), 274–304.Google Scholar
  19. [19]
    L. Smith,Polynomial Invariants of Finite Groups, AK Peters, Wellesley, 1995.Google Scholar
  20. [20]
    R. Steinberg,Differential equations invariant under finite reflection groups, Trans. Math. Soc.112 (1964), 392–400.Google Scholar
  21. [21]
    A. Wagner,Groups generated by elations, Abh. Math. Seminar Univ. Hamburg41 (1974), 190–205.Google Scholar
  22. [22]
    A. Wagner,Collineation groups generated by homologies of order greater than 2, Geom. Dedicata7 (1978), 387–398.Google Scholar
  23. [23]
    A. Wagner,Determination of the finite primitive reflection groups over an arbitrary field of characteristic not 2, I, Geom. Dedicata9 (1980), 239–253; II, ibid. Geom. Dedicata10, 183–189; III, Geom. Dedicata ibid.10, 475–523.Google Scholar
  24. [24]
    C. Xu,Computing invariant polynomials of p-adic reflection groups, Proc. Symp. Appl. Math., vol. 48, Amer. Math. Soc., Providence, 1994.Google Scholar
  25. [25]
    A. E. Zalesskiî and V. N. Serežkin,Linear groups generated by transvections, Izv. Akad. Nauk SSSR, Ser. Mat.40 (1976), no. 1, 26–49 (in Russian). English translation: A. E. Zalesskiî and V. N. Serežkin,Linear groups generated by transvections, Math. USSR Izv.10 (1976), 25–46.Google Scholar
  26. [26]
    A. E. Zalesskiî and V. N. Serežkin,Finite linear groups generated by reflections, Izv. Akad. Nauk SSSR, Ser. Mat.44 (1980), no. 6, 1279–1307 (in Russian). English translation: A. E. Zalesskiî and V. N. Serežkin,Finite linear groups generated by reflections, Math. USSR Izv.17 (1981), 477–503.Google Scholar

Copyright information

© Birkhäuser Boston 1997

Authors and Affiliations

  • G. Kemper
    • 1
  • G. Malle
    • 1
  1. 1.IWRHeidelbergGermany

Personalised recommendations