Inventiones mathematicae

, Volume 99, Issue 1, pp 225–246

# Gauss polynomials and the rotation algebra

• Man-Duen Choi
• George A. Elliott
• Noriko Yui
Article

## Summary

Newton's binomial theorem is extended to an interesting noncommutative setting as follows: If, in a ring,baab with γ commuting witha andb, then the (generalized) binomial coefficient$$\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)_r$$ arising in the expansion
$$\left( {a + b} \right)^n = \sum\limits_{k = 0}^n {\left( {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right)} _\gamma a^{n - k} b^k$$
(resulting from these relations) is equal to the value at γ of the Gaussian polynomial
$$\left[ {\begin{array}{*{20}c} n \\ k \\ \end{array} } \right] = \frac{{\left[ n \right]}}{{\left[ k \right]\left[ {n - k} \right]}}$$
where [m]=(1-xm)(1-xm−1)...(1-x). (This is of course known in the case γ=1.)

From this it is deduced that in the (universal)C*-algebraAgq generated by unitariesu andv such thatvu=e2πiθuv, the spectrum of the self-adjoint element (u+v)+(u+v)* has all the gaps that have been predicted to exist-provided that either θ is rational, or θ is a Liouville number. (In the latter case, the gaps are labelled in the natural way-viaK-theory-by the set of all non-zero integers, and the spectrum is a Cantor set.)

## Preview

### References

1. 1.
Andrews, G.E.: The Theory of Partitions. In: Rota, G.-C. (ed.) Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, Reading Massachusetts, 1976Google Scholar
2. 2.
Andrews, G.E., Baxter, R.J., Forrester, P.J.: Eight-vertex SoS model and generalized Rogers-Ramanujan type identities. J. Statist. Phys.35, 193–266 (1984)Google Scholar
3. 3.
Avron, J.E., Simon, B.: Almost periodic Schrödinger operators, II. The density of states. Duke Math. J.50, 369–391 (1983)Google Scholar
4. 4.
Bellissard, J.: Almost periodicity in solid state physics andC *-algebras. In: Berg, C., Fuglede, B. (eds.) The Harold Bohr Centenary pp. 35–75, Mat.-Fys. Medd. Danske Vid. Selsk.42:3 (1989)Google Scholar
5. 5.
Bellissard, J., Lima, R., Testard, D.: Almost periodic Schrödinger operators. In: Streit, L. (ed.) Mathematics+Physics, Lectures on Recent Results. Vol. 1 pp. 1–64, World Scientific Publishers, Singapore, 1985Google Scholar
6. 6.
Bellissard, J., Simon, B.: Cantor spectrum for the almost. Mathieu equation. J. Funct. Anal.48, 408–419 (1982)Google Scholar
7. 7.
Bhatia, R.: Perturbation Bounds for Matrix Eigenvalues. Pitman Research Notes in Mathematics Series 162, Longman, London, 1987Google Scholar
8. 8.
Chambers, W.G.: Linear-network model for magnetic breakdown in two dimensions. Phys. Rev. A140, 135–143 (1965)Google Scholar
9. 9.
Connes, A.:C * algèbres et géométrie différentielle. C.R. Acad. Sci. Paris290, 559–604 (1980)Google Scholar
10. 10.
Elliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. C.R. Math. Rep. Acad. Sci. Canada4, 255–259 (1982)Google Scholar
11. 11.
Elliott, G.A.: Gaps in the spectrum of an almost periodic Schrödinger operator. II. In: Araki, H., Effros, E.G. (eds.) Geometric Methods in Operator Algebras. Pitman Research Notes in Mathematics Series 123, pp. 181–191, Longman, London, 1986Google Scholar
12. 12.
Helffer, B., Sjöstrand, J.: Analyse semi-classique pour l'équation de Harper (avec application à l'équation de Schrödinger avec champ magnétique) (Preprint)Google Scholar
13. 13.
Herman, M.: Une méthode pour minorer les exposants de Lyapunov et quelques exemples montrant le caractère local d'un théorème d'Arnol'd et de Moser sur le tore de dimension 2. Comment. Math. Helv.58, 453–502 (1983)Google Scholar
14. 14.
Hofstadter, D.R.: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields. Phys. Rev. B14, 2239–2249 (1976)Google Scholar
15. 15.
Jimbo, M.: Aq-difference analogue ofU (g) and the Yang-Baxter equation. Lett. Math. Phys.10, 63–69 (1986)Google Scholar
16. 16.
Peierls, R.: Zur Theorie des Diamagnetismus von Leitungselektronen. Z. Phys.80, 763–791 (1933)Google Scholar
17. 17.
Pimsner, M., Voiculescu, D.: Exact sequences forK-groups and Ext-groups of certain crossproductC *-algebras. J. Oper. Theory4, 93–118 (1980)Google Scholar
18. 18.
Riedel, N.: On the topological stable rank of irrational rotation algebras. J. Oper. Theory13, 143–150 (1985)Google Scholar
19. 19.
Sinai, Ya.G.: Anderson localization for one-dimensional difference Schrödinger operator with quasiperiodic potential. J. Stat. Phys.46, 861–909 (1987)Google Scholar

## Authors and Affiliations

• Man-Duen Choi
• 1
• George A. Elliott
• 1
• 2
• Noriko Yui
• 3
1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
2. 2.Mathematics InstituteUniversity of CopenhagenCopenhagen
3. 3.Department of MathematicsQueen's University at KingstonKingstonCanada