Advertisement

Inventiones mathematicae

, Volume 99, Issue 1, pp 115–143 | Cite as

Long-range many-body scattering

Asymptotic clustering for coulomb-type potentials
  • I. M. Sigal
  • A. Soffer
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Comb] Combes, J.M.: Relatively compact interactions in many particle systems. Commun. Math. Phys.12, 283 (1969)Google Scholar
  2. [CFKS] Cycon, H., Froese, R., Kirsch, W., Simon, B.: Schrödinger operators. Berlin Heidelberg New York: Springer 1987Google Scholar
  3. [Der] Derezinski, J.: A new proof of propagation theorem forN-body quantum systems. Viginia Tech. 1988 (Preprint)Google Scholar
  4. [En] Enss, V.: Quantum scattering theory for two and three-body systems with potentials of short- and long-range. In: Graffi, S. (ed.) Schrödinger operators. (Lect. Notes Math., Vol. 1159) Berlin Heidelberg New York: Springer 1985Google Scholar
  5. [FH] Froese, R., Herbst, I.: A new proof of Mourre estimate. Duke Math. J.49, 1975 (1982)Google Scholar
  6. [Ka1] Kato, T.: Fundamental properties of Hamiltonian operators of Schrödinger type. Trans. Am. Math. Soc.70, 195–211 (1951)Google Scholar
  7. [Ka2] Kato, T.: Wave operators and similarity for some non-self-adjoint operators. Math. Ann.162, 258–269 (1966)Google Scholar
  8. [Mo1] Mourre, E.: Absence of singular continuous spectrum for certain self-adjoint operators. Commun. Math. Phys.78, 391–408 (1981)Google Scholar
  9. [Mo2] Mourre, E.: private communicationGoogle Scholar
  10. [Pe] Perry, P.: Commun. Math. Phys.81, 243–259 (1981)Google Scholar
  11. [PSS] Perry, P., Sigal, I.M., Simon, B.: Spectral analysis ofN-body Schrödinger operators. Ann. Math.114, 519–567 (1981)Google Scholar
  12. [RS] Reed, M., Simon, B.: Methods of modern mathematical physics II, III, IV. New York: Academic PressGoogle Scholar
  13. [Sig1] Sigal, I.M.: On the long-range scattering. Toronto (Preprint)Google Scholar
  14. [Sig2] Sigal, I.M.: Lectures on scattering theory. Toronto: xxx 1987Google Scholar
  15. [SigSof1] Sigal, I.M., Soffer, A.: TheN-particle scattering problem: asymptotic completeness for short-range systems. Anal. Math.125, (1987)Google Scholar
  16. [SigSof2] Sigal, I.M., Soffer, A.: Asymptotic completeness of multiparticle scattering. In: Knowles, Saito (eds.) Differential equations and mathematical physics. (Lect. Notes Math., Vol. 1285) Berlin Heidelberg New York: Springer 1987Google Scholar
  17. [SigSof3] Sigal, I.M. Soffer, A.: Local decay and velocity bounds. Princeton (1988) (Preprint)Google Scholar
  18. [SigSof4] Sigal, I.M., Soffer, A.: Asymptotic completeness for Coulomb-type 4-body systems. (In preparation)Google Scholar
  19. [SinMuth] Sinha, K., Muthuramalingam, P.L.: J. Funct. Anal.55, 323–343 (1984)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • I. M. Sigal
    • 1
  • A. Soffer
    • 2
  1. 1.Department of MathematicsUniversity of TorontoTorontoCanada
  2. 2.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations