Advertisement

Inventiones mathematicae

, Volume 99, Issue 1, pp 49–57 | Cite as

Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids

  • William Duke
  • Rainer Schulze-Pillot
Article

Keywords

Quadratic Form Lattice Point Ternary Quadratic Form Positive Ternary Quadratic Form 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Ci]
    Cipra, B.: On the Niwa-Shintani theta-kernel lifting of modular forms. Nagoya Math. J. 91, 49–117 (1983)Google Scholar
  2. [De]
    Deligne, P.: La conjecture de Weil. I. Publ. Math., Inst. Hautes Etud. Sci. 43, 273–308 (1973)Google Scholar
  3. [Du]
    Duke, W.: Hyperbolic distribution problems and half-integral weight Maass forms. Invent. Math. 92, 73–90 (1988)Google Scholar
  4. [Ea]
    Earnest, A.G.: Representation of spinor exceptional integers by ternary quadratic forms. Nagoya Math. J. 93, 27–38 (1984)Google Scholar
  5. [E]
    Eichler, M.: Quadratische Formen und orthogonale Gruppen. Berlin Göttingen Heidelberg: Springer 1952Google Scholar
  6. [Go-Fol]
    Golubeva, E.P., Fomenko, O.M.: Application of spherical functions to a certain problem in the theory of quadratic forms. J. Sov. Math. 38, 2054–2060 (1987)Google Scholar
  7. [Go-Fo2]
    Golubeva, E.P., Fomenko, O.M.: Asymptotic equidistribution of integral points on the three-dimensional sphere (russian). Zapiski Nauchnykh Seminarov Leningradskogo Otd. Math. Inst. im. V.A. Steklova AN SSSR 160, 54–71 (1987)Google Scholar
  8. [I]
    Iwaniec, H.: Fourier coefficients of modular forms of half integral weight. Invent. Math. 87, 385–401 (1987)Google Scholar
  9. [Jo]
    Jones, B.W.: The arithmetic theory of quadratic forms. Carus Math. Monographs no. 10, New York: Wiley 1950Google Scholar
  10. [Kn]
    Kneser, M.: Darstellungsmaße indefiniter quadratischer Formen. Math. Z. 77, 188–194 (1961)Google Scholar
  11. [Ma]
    Malyshev, A.V.: Representation of integers by positive quadratic forms. Trudy Mat. Inst. Akad. Nauk. SSSR 65 (1962)Google Scholar
  12. [Ni]
    Niwa, S.: Modular forms of half integral weight and the integral of certain theta functions. Nagoya Math. J. 56, 147–161 (1974)Google Scholar
  13. [OM]
    O'Meara, O.T.: Introduction to quadratic forms. Berlin Heidelberg New York: Springer 1973Google Scholar
  14. [Pe]
    Peters, M.: Darstellungen durch definite ternäre quadratische Formen, Acta Arith. 34, 57–80 (1977)Google Scholar
  15. [Pf]
    Pfetzer, W.: Die Wirkung der Modulsubstitutionen auf mehrfache Thetareihen zu quadratischen Formen ungerader Variablenzahl. Arch. Math. 4, 448–454 (1953)Google Scholar
  16. [Pod]
    Podsypanin, E.V.: The number of integral points in an elliptic region (a remark on a theorem of A.V. Malyshev). J. Sov. Math. 18, 923–925 (1982)Google Scholar
  17. [Pom]
    Pommerenke, C.: Über die Gleichverteilung von Gitterpunkten auf m-dimensionalen Ellipsoiden. Acta Arith. 5, 227–257 (1959)Google Scholar
  18. [Shi]
    Shimura, G.: On modular forms of half integral weight. Ann. Math. 97, 440–481 (1973)Google Scholar
  19. [Si]
    Siegel, C.L.: Über die analytische Theorie der quadratischen Formen. Ann. Math. 36, 527–606 (1935)Google Scholar
  20. [Si2]
    Siegel, C.L.: Über die Classenzahl quadratischer Zahlkörper. Acta Arith. 1, 83–86 (1935)Google Scholar
  21. [SPI]
    Schulze-Pillot, R.: Thetareihen positiv definiter quadratischer Formen. Invent. Math. 75, 283–299 (1984)Google Scholar
  22. [SP2]
    Schulze-Pillot, R.: Darstellungsmaße von Spinorgeschlechtern ternärer quadratischer Formen. J. Reine Angew. Math. 352, 114–132 (1984)Google Scholar
  23. [SP3]
    Schulze-Pillot, R.: Ternary quadratic forms and Brandt matrices. Nagoya Math. J. 102, 117–126 (1986)Google Scholar
  24. [Stu]
    Sturm, J.: Theta series of weight 3/2. J. Number Th. 14, 353–361 (1982)Google Scholar
  25. [Te]
    Teterin, Yu.G.: Representation of integers by positive ternary quadratic forms. J. Sov. Math. 29, 1312–1342 (1985)Google Scholar
  26. [vB]
    Van der Blij, F.: On the theory of quadratic forms. Ann. Math. 50, 875–899 (1949)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • William Duke
    • 1
  • Rainer Schulze-Pillot
    • 2
    • 3
  1. 1.Department of MathematicsRutgers UniversityNew BrunswickUSA
  2. 2.Institut für Mathematik 2Berlin (West) 33
  3. 3.Fakultät für MathematikUniversität BielefeldBielefeld 1FRG

Personalised recommendations