Advertisement

Archiv der Mathematik

, Volume 37, Issue 1, pp 481–498 | Cite as

The occurrence of groups as automorphisms of nilpotentp-groups

  • U. H. M. Webb
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Babai, On the minimum order of graphs with given group. Canad. Math. Bull.17, 467–470 (1974).Google Scholar
  2. [2]
    N. Backhouse, Extra selection rules. J. Math. Phys.15, 119–124 (1974).Google Scholar
  3. [3]
    B.Bollobas, Graph Theory. Graduate texts in mathematics63, New York 1979.Google Scholar
  4. [4]
    R. M. Bryant andL. G. Kovács, Lie representations and groups of prime-power order. J. London Math. Soc. (2)17, 415–421 (1978).Google Scholar
  5. [5]
    C.Godsil, GRR's for non-solvable groups. Mathematics Research Report32 (1978), University of Melbourne. (To appear, Proc. 1978 Szeged Conference).Google Scholar
  6. [6]
    M.Hall and J. K.Senior, The groups of order 2n (n≦6). New York 1964.Google Scholar
  7. [7]
    F.Harary and E. M.Palmer, Graphical Enumeration. New York 1973.Google Scholar
  8. [8]
    F. Harary andE. M. Palmer, The smallest graph whose group is cyclic. Czech. Math. J.16, 70–71 (1966).Google Scholar
  9. [9]
    H. Heineken andH. Liebeck. The occurrence of finite groups in the automorphism group of nilpotent groups of class 2. Arch. Math.25, 8–16 (1974).Google Scholar
  10. [10]
    D. Jonah andM. Konvisser, Some non-abelian groups with abelian automorphism group. Arch. Math.25, 131–133 (1975).Google Scholar
  11. [11]
    G. A. Miller, A non-abelian group whose group of automorphisms is abelian. Messenger of Math.43, 124–125 (1913).Google Scholar
  12. [12]
    O. Müller, Onp-automorphisms of finitep-groups. Arch. Math.32, 533–538 (1979).Google Scholar
  13. [13]
    M. E. Watkins, Graphical regular representations of free products of groups. J. Comb. Th. B21, 47–56 (1976).Google Scholar

Copyright information

© Birkhäuser Verlag 1981

Authors and Affiliations

  • U. H. M. Webb
    • 1
  1. 1.Pure Mathematics DepartmentQueen Mary CollegeLondonEngland

Personalised recommendations