Translating surfaces of the non-parametric mean curvature flow with prescribed contact angle

  • Steven J. Altschuler
  • Lang F. Wu
Article

Abstract

In this work, we study surfaces over convex regions in ℝ2 which are evolving by the mean curvature flow. Here, we specify the angle of contact of the surface to the boundary cylinder. We prove that solutions converge to ones moving only by translation.

Mathematics subject classification

35K20 58G11 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Al]
    Altschuler, S.J.: Singularities of the curve shrinking flow for space curves. J. Diff. Geom.34, 491–514 (1991)Google Scholar
  2. [AW]
    Altschuler, S.J., Wu, L.F.: Convergence to translating solitons for a class of quasilinear parabolic equations with fixed angle of contact to a boundary. Math. Ann.295, 761–765 (1993)Google Scholar
  3. [An]
    Angenent, S.B.: On the formation of singularities in the curve shortening problem. J. Diff. Geom.33, 601–633 (1991)Google Scholar
  4. [GT]
    Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations (Grundlehren Math. Wiss., vol. 224) Berlin, Heidelberg, New York: Springer 1983Google Scholar
  5. [Ha]
    Hamilton, R.S.: Eternal solutions to the mean curvature flow. Preprint 1991Google Scholar
  6. [Hu1]
    Huisken, G.: Non-parametric mean curvature evolution with boundary conditions. J. Differ. Equations77, 369–378 (1989)Google Scholar
  7. [Hu2]
    Huisken, G.: Asymptotic behaviour for singularities of the mean curvature flow. J. Diff. Geom.31, 285–299 (1991)Google Scholar
  8. [LTU]
    Lions, P., Trudinger, N., Urbas, J.: The Neumann problem for equations of Monge-Ampère type. Commun. Pure Appl. Math.39, 539–563 (1986)Google Scholar
  9. LUS]
    Ladyzhenskaya, O.A., Solonnikov, V., Ural'ceva, N.: Linear and quasilinear equations of parabolic type. Transl. Math. Monogr.23A, M.S. (1968)Google Scholar
  10. [S]
    Stone, A: The mean curvature evolution of graphs. Honour's Thesis, ANU31 (1989)Google Scholar
  11. [U]
    Urbas, J.: Private communication 1992Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Steven J. Altschuler
    • 1
  • Lang F. Wu
    • 2
  1. 1.Institute for Advanced StudyUniversity of PrincetonPrincetonUSA
  2. 2.Mathematics DepartmentUniversity of PrincetonPrincetonUSA

Personalised recommendations