Optical and Quantum Electronics

, Volume 24, Issue 1, pp 1–30 | Cite as

Kramers-Krönig relations in nonlinear optics

  • D. C. Hutchings
  • M. Sheik-Bahae
  • D. J. Hagan
  • E. W. Van Stryland
Tutorial Review

Abstract

We review dispersion relations, which relate the real part of the optical susceptibility (refraction) to the imaginary part (absorption). We derive and discuss these relations as applied to nonlinear optical systems. It is shown that in the nonlinear case, for self-action effects the correct form for such dispersion relations is nondegenerate, i.e. it is necessary to use multiple frequency arguments. Nonlinear dispersion relations have been shown to be very useful as they usually only require integration over a limited frequency range (corresponding to frequencies at which the absorption changes), unlike the conventional linear Kramers-Krönig relation which requires integration over all absorbing frequencies. Furthermore, calculation of refractive index changes using dispersion relations is easier than a direct calculation of the susceptibility, as transition rates (which give absorption coefficients) are, in general, far easier to calculate than the expectation value of the optical polarization. Both resonant (generation of some excitation that is long lived compared with an optical period) and nonresonant ‘instantaneous’ optical nonlinearities are discussed, and it is shown that the nonlinear dispersion relation has a common form and can be understood in terms of the linear Kramers-Krönig relation applied to a new system consisting of the material plus some ‘perturbation’. We present several examples of the form of this external perturbation, which can be viewed as the pump in a pump-probe experiment. We discuss the two-level saturated atom model and bandfilling in semiconductors among others for the resonant case. For the nonresonant case some recent work is included where the electronic nonlinear refractive coefficient,n2, is determined from the nonlinear absorption processes of two-photon absorption, Raman transitions and the a.c. Stark effect. We also review how the dispersion relations can be extended to give alternative forms for frequency summation which, for example, allows the real and imaginary parts ofχ(2) to be related.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. A. Kramers,Atti Congr. Int. Fis. Como 2 (1927) 545.Google Scholar
  2. 2.
    R. De L. Krönig,J. Opt. Soc. Am. Rev. Scient. Instrum. 12 (1926) 547.Google Scholar
  3. 3.
    Idem, Ned. Tijdschr. Natuurk 9 (1942) 402.Google Scholar
  4. 4.
    H. Bode, ‘Network Analysis and Feedback Amplifier Design’ (Van Nostrand, New York, 1945).Google Scholar
  5. 5.
    H. M. Nussenzveig, ‘Causality and Dispersion Relations’ (Academic Press, New York, 1972).Google Scholar
  6. 6.
    W. Schützer andJ. Tiomno,Phys. Rev. 83 (1951) 249.Google Scholar
  7. 7.
    E. P. Wigner,Am. J. Phys. 23 (1955) 371.Google Scholar
  8. 8.
    E. C. Titchmarsh, ‘Introduction to the Theory of Fourier Integrals’ (Oxford University Press, Oxford, 1948).Google Scholar
  9. 9.
    J. S. Toll,Phys. Rev. 104 (1956) 1760.Google Scholar
  10. 10.
    A. Yariv, ‘Quantum Electronics’, 2nd Edn (Wiley, New York, 1975).Google Scholar
  11. 11.
    K. A. Shore andD. A. S. Chan,Electron. Lett. 26 (1990) 1206.Google Scholar
  12. 12.
    D. A. B. Miller, C. T. Seaton, M. E. Prise andS. D. Smith,Phys. Rev. Lett. 47 (1981) 197.Google Scholar
  13. 13.
    J. F. L. Ridener andJ. R. H. Good,Phys. Rev. B10 (1974) 4980.Google Scholar
  14. 14.
    M. Sheik-Bahae, D. J. Hagan andE. W. Van Stryland,Phys. Rev. Lett. 65 (1990) 96.Google Scholar
  15. 15.
    M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan andE. W. Van Stryland,IEEE J. Quantum Electron. QE-27 (1991) 1296.Google Scholar
  16. 16.
    S. M. Kogan,Sov. Phys. JETP 16 (1963) 217.Google Scholar
  17. 17.
    P. J. Price,Phys. Rev. 130 (1963) 1792.Google Scholar
  18. 18.
    W. J. Caspers,ibid. A133 (1964) 1249.Google Scholar
  19. 19.
    P. Meystre andM. Sargent III, in ‘Elements of Quantum Optics’ (Springer-Verlag, Berlin, 1990).Google Scholar
  20. 20.
    R. W. Boyd andS. Mukamel,Phys. Rev. B29 (1984) 1973.Google Scholar
  21. 21.
    T. S. Moss,Proc. Phys. Soc. Lond. B67 (1954) 775.Google Scholar
  22. 22.
    E. Burstein,Phys. Rev. 93 (1954) 632.Google Scholar
  23. 23.
    D. A. B. Miller, M. H. Mozolowski, A. Miller andS. D. Smith,Opt. Commun. 27 (1978) 133.Google Scholar
  24. 24.
    H. M. Gibbs, T. N. C. Venkatesan, S. L. McCall, A. Passner, A. C. Gossard andW. Wiegmann,Appl. Phys. Lett. 34 (1979) 511.Google Scholar
  25. 25.
    H. M. Gibbs, S. L. McCall, T. N. C. Venkatesan, A. C. Gossard, A. Passner andW. Wiegmann,ibid. 35 (1979) 451.Google Scholar
  26. 26.
    D. A. B. Miller, S. D. Smith andA. M. Johnston,ibid. 35 (1979) 658.Google Scholar
  27. 27.
    B. S. Wherrett andN. A. Higgins,Proc. R. Soc. A379 (1982) 67.Google Scholar
  28. 28.
    E. O. Kane,J. Phys. Chem. Solids 1 (1957) 249.Google Scholar
  29. 29.
    L. Bányai andS. W. Koch,Z. Phys. B: Condens. Matter 63 (1986) 283.Google Scholar
  30. 30.
    N. Finlayson, W. C. Banyai, C. T. Seaton, G. I. Stegeman, M. O'Neill, T. J. Cullen andC. N. Ironside,J. Opt. Soc. Am. B6 (1989) 675.Google Scholar
  31. 31.
    J. P. Löwenau, S. Schmitt-Rink andH. Haug,Phys. Rev. Lett. 49 (1982) 1511.Google Scholar
  32. 32.
    Y. H. Lee, A. Chavez-Pirson, S. W. Koch, H. M. Gibbs, S. H. Park, J. Morhange, A. Jeffrey, N. Peyghambarian, L. Banyai, A. C. Gossard andW. Wiegmann,ibid. 57 (1986) 2446.Google Scholar
  33. 33.
    D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, andW. Wiegmann,IEEE J. Quantum Electron. QE-20 (1984) 265.Google Scholar
  34. 34.
    J. S. Weiner, D. A. B. Miller andD. S. Chemla,Appl. Phys. Lett. 50 (1987) 842.Google Scholar
  35. 35.
    Y. Wang, N. Herron, W. Mahler andA. Suna,J. Opt. Soc. Am. B6 (1989) 808.Google Scholar
  36. 36.
    F. V. Karpushko andG. V. Sinitsyn,J. Appl. Spectrosc. USSR 29 (1978) 1323.Google Scholar
  37. 37.
    D. C. Hutchings, A. D. Lloyd, I. Janossy andB. S. Wherrett,Opt. Commun. 61 (1987) 345.Google Scholar
  38. 38.
    B. S. Wherrett, D. Hutchings andD. Russell,J. Opt. Soc. Am. B3 (1986) 351.Google Scholar
  39. 39.
    Landolt-Börstein, ‘Numerical Data and Functional Relationships in Science and Technology’, Vols 17a and 17b ‘Group III’ (Springer-Verlag, Berlin, 1982).Google Scholar
  40. 40.
    W. Franz,Z. Naturforsh. 13a (1958) 484.Google Scholar
  41. 41.
    L. V. Keldysh,Sov. Phys. JETP 34 (1958) 788.Google Scholar
  42. 42.
    K. Tharmalingam,Phys. Rev. 130 (1963) 2204.Google Scholar
  43. 43.
    M. Abramowitz andI. A. Stegun, ‘Handbook of Mathematical Functions’ (Dover, New York, 1964).Google Scholar
  44. 44.
    B. O. Seraphin andN. Bottka,Phys. Rev. 139 (1965) 560.Google Scholar
  45. 45.
    Opt. Quantum Electron. 22 (special issue on charge transport nonlinearities) (1990).Google Scholar
  46. 46.
    P. Gunter andJ. P. Huignard (editors), ‘Photorefractive Materials and their Applications’, Vol. 61 (Springer-Verlag, Berlin, 1988).Google Scholar
  47. 47.
    B. S. Ryvkin,Sov. Phys. Semicond. 15 (1981) 796.Google Scholar
  48. 48.
    D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus Jr, A. C. Gossard andW. Wiegmann,IEEE J. Quantum Electron. QE-21 (1985) 1462.Google Scholar
  49. 49.
    J. A. Van Vechten andD. E. Aspnes,Phys. Lett. 30A (1969) 346.Google Scholar
  50. 50.
    M. H. Weiler,Solid St. Commun. 39 (1981) 937.Google Scholar
  51. 51.
    B. S. Wherrett,J. Opt. Soc. Am. B1 (1984) 67.Google Scholar
  52. 52.
    E. W. Van Stryland, H. Vanherzeele, M. A. Woodall, M. J. Soileau, A. L. Smirl, S. Guha andT. F. Boggess,Opt. Engng 24 (1985) 613.Google Scholar
  53. 53.
    E. W. Van Stryland, A. L. Smirl, T. F. Boggess, M. J. Soileau, B. S. Wherrett andF. A. Hopf, in ‘Chemistry and Physics of Picosecond Phenomena III’, Vol. 23, edited by K. B. Eisenthal, R. M. Hochstrasser, W. Kaiser and A. Laubereau (Springer-Verlag, Berlin, 1982) p. 368.Google Scholar
  54. 54.
    J. M. Worlock, in ‘Laser Handbook’, edited by F. T. Arecchi and E. D. Schulz-DuBois (North-Holland, Amsterdam, 1972) p. 1323.Google Scholar
  55. 55.
    D. J. Moss, E. Ghahramani, J. E. Sipe andH. M. Van Driel,Phys. Rev. B41 (1990) 1542.Google Scholar
  56. 56.
    M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan andE. W. Van Stryland,IEEE J. Quantum Electron. 26 (1990) 760.Google Scholar
  57. 57.
    M. Sheik-Bahae, A. A. Said andE. W. Van Stryland,Opt. Lett. 14 (1989) 955.Google Scholar
  58. 58.
    R. Adair, L. L. Chase andS. A. Payne,Phys. Rev. B39 (1989) 3337.Google Scholar
  59. 59.
    I. N. Ross, W. T. Toner, C. J. Hooker, J. R. M. Barr andI. Coffey,J. Modern Opt. 37 (1990) 555.Google Scholar
  60. 60.
    M. J. LaGasse, K. K. Anderson, C. A. Wang, H. A. Haus andJ. G. Fujimoto,Appl. Phys. Lett. 56 (1990) 417.Google Scholar
  61. 61.
    J. F. L. Ridener andJ. R. H. Good,Phys. Rev. B11 (1975) 2768.Google Scholar
  62. 62.
    F. Smet andA. Van Groenendael,ibid. A19 (1979) 334.Google Scholar
  63. 63.
    D. J. Moss, J. E. Sipe andH. M. Van Driel,ibid. B36 (1987) 9708.Google Scholar
  64. 64.
    P. N. Butcher andD. Cotter, ‘The Elements of Nonlinear Optics’ (Cambridge University Press, Cambridge, 1990).Google Scholar
  65. 65.
    F. A. Hopf andG. I. Stegeman, ‘Applied Classical Electrodynamics’, Vol. 2: ‘Nonlinear Optics’ (Wiley, New York, 1986).Google Scholar
  66. 66.
    S. Chapman,Am. J. Phys. 24 (1956) 162.Google Scholar

Copyright information

© Chapman & Hall 1992

Authors and Affiliations

  • D. C. Hutchings
    • 1
  • M. Sheik-Bahae
    • 1
  • D. J. Hagan
    • 1
    • 2
  • E. W. Van Stryland
    • 1
    • 3
  1. 1.Center for Research in Electro-Optics and Lasers (CREOL)University of Central FloridaOrlandoUSA
  2. 2.Department of PhysicsUSA
  3. 3.Departments of Physics and Electrical EngineeringUSA

Personalised recommendations