Celestial mechanics

, Volume 44, Issue 4, pp 317–338 | Cite as

A precise multipass method for satellite Doppler positioning

  • K. Aksnes
  • P. H. Andersen
  • E. Haugen


A precise and efficient algorithm is developed for determining the locations of radio beacons (e.g. of the ARGOS or COSPAS/SARSAT type) based on Doppler shift measurements in overflying satellites. The method distinguishes itself through: (1) the use of a very compact analytic orbital theory valid for all eccentricities, (2) autonomous orbit improvement based on Doppler data for one or more local reference beacons accessible at a single LUT, (3) simultaneous orbit improvement and calculation of beacon coordinates for an arbitrary number of satellites, satellite passes, and beacons, and (4) very efficient semi-analytic matrix inversion by partitioning into global, semi-global, and local parameters.

The algorithm has been implemented in a FORTRAN program which can be run on a PC. Error statistics are presented from applications of the program to a large number of actual Doppler curves obtained with the ARGOS and COSPAS/SARSAT systems.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aksnes, K. (1972): ‘On the use of the Hill variables in artificial satellite theory: Brouwer's theory’.Astron. Astrophys. 17, 70–75.Google Scholar
  2. Andersen, P.H. and Haugen, E. (1983): ‘Satellite Doppler positioning program-sequential version SDPP-SEQ-011282 user's guide’. FFI/RAPPORT-83/9002 (pub. at NDRE, P.O. Box 25, Kjeller, Norway).Google Scholar
  3. Bessis, J. L. (1981): ‘Operational data collection and platform location by satellite’.Remote Sensing of the Environment 11, 93–111.Google Scholar
  4. Brouwer, D. (1959): ‘Solution of the problem of artificial satellite theory without drag’.Astron. Journ 64, 378–397.Google Scholar
  5. Graham, W. B. and Vigneron, F. R. (1981): ‘Orbit determination and prediction methods for satellite-aided search and rescue’.Journal of Spacecraft and Rockets 18, 58–63.Google Scholar
  6. Green, T. (1975): ‘Satellite Doppler data processing for platform navigation.’IEEE Transactions on Geoscience Electronics GE-13, 28–38.Google Scholar
  7. Haugen, E. (1986): ‘Satellite Doppler positioning program simultaneous version SDPP-SIM user's guide’. Prepared for NDRE, P.O. Box 25, Kjeller, Norway.Google Scholar
  8. Klobuchar, J. A. (1975): ‘A first-order worldwide, ionospheric time-delay algorithm.’ Air Force Cambridge Research Laboratories, AFCRL-TR-75-0502.Google Scholar
  9. Kristiansen, O. (1987): ‘Statistical results for emergency locationing with the SARSAT/COSPAS system at Tromsø Telemetry Station’, Master's thesis, Univ. of Tromsø (in Norwegian).Google Scholar
  10. Levanon, N. and Ben Zaken, M. (1985): ‘Random error in ARGOS and SARSAT satellite positioning systems’,IEEE Transactions on Aerospace and Electronic Systems, AES-21, 783–790.Google Scholar
  11. Lyddane, R. H. (1963): ‘Small eccentricities or inclinations in the Brouwer theory of the artificial satellite’.Astron. Journ. 68, 555–558.Google Scholar
  12. Morduch, G. E., Argentiero, P. D., Lefler, J. G. and Garza-Robles, R. (1978): ‘IEEE Plans 1978’, Position Location and Navigation Symposium Record, San Diego, CA Nov. 6–9, 1978, pp. 94–98.Google Scholar
  13. Schmid, P. E., Lynn, J. J. and Vonbun, F. O. (1976): ‘Single pass Doppler positioning for search and rescue satellite missions’. IEEE Position Location and Navigation Symposium Record, San Diego, CA, Nov 1–3, 1976, pp 58–67.Google Scholar
  14. Werstiuk, H. L., Ludwig, D., Trudell, B. J., and Selivanov, A. S. (1984). ‘The COSPAS-SARSAT system’. InSatellite-Aided Search and Rescue, Ed. H. Curion, CNES, Cepadues-Editions, pp 95–110.Google Scholar

Copyright information

© Kluwer Academic Publishers 1988

Authors and Affiliations

  • K. Aksnes
    • 1
    • 2
  • P. H. Andersen
    • 3
  • E. Haugen
    • 4
  1. 1.Mathematics SectionNorwegian Defence Research EstablishmentKjellerNorway
  2. 2.Institute for Mathematical and Physical SciencesUniversity of TromsøTromsøNorway
  3. 3.Mathematics SectionNorwegian Defence Research EstablishmentKjellerNorway
  4. 4.Norwegian Space CentreOslo 3Norway

Personalised recommendations