On the theory of divergence-measure fields and its applications

  • Gui-Qiang Chen
  • Hermano Frid


Divergence-measure fields are extended vector fields, including vector fields inLp and vector-valued Radon measures, whose divergences are Radon measures. Such fields arise naturally in the study of entropy solutions of nonlinear conservation laws and other areas. In this paper, a theory of divergence-measure fields is presented and analyzed, in which normal traces, a generalized Gauss-Green theorem, and product rules, among others, are established. Some applications of this theory to several nonlinear problems in conservation laws and related areas are discussed. In particular, with the aid of this theory, we prove the stability of Riemann solutions, which may contain rarefaction waves, contact discontinuities, and/or vacuum states, in the class of entropy solutions of the Euler equations for gas dynamics.


divergence-measure fields normal traces Gauss-Green theorem product rules Radon measures conservation laws Euler equations gas dynamics entropy solutions entropy inequality stability uniqueness vacuum Cauchy problem initial layers boundary layers initial-boundary value problems 

Mathematical subject classification

Primary: 00-02 26B20 28C05 35L65 35B10 35B35 Secondary: 26B35 26B12 35L67 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Anzellotti G.,Pairings between measures and functions and compensated compactness, Ann. Mat. Pura Appl.,135 (1983), 293–318.Google Scholar
  2. [2]
    Baiocchi C. and A. Capelo, Variational and Quasi-Variational Inequalities, Applications to Free-Boundary Problems, Vols.1,2 (1984), John Wiley: Chichester-New York.Google Scholar
  3. [3]
    Bardos C., Le Roux A.Y. and J.C. Nedelec,First order quasilinear equations with boundary conditions, Comm. Partial Diff. Eqs.,4 (1979), 1017–1034.Google Scholar
  4. [4]
    Bouchitté G. and G. Buttazzo,Characterization of optimal shapes and masses through Monge-Kantorovich equation, Preprint, University of Pisa, February 2000.Google Scholar
  5. [5]
    Brezzi F. and M. Fortin,Mixed and Hydrid Finite Element Methods, Springer-Verlag: New York, 1991.Google Scholar
  6. [6]
    Bürger R., Karlsen K.H. and H. Frid,On a free boundary problem for a strongly degenerate quasilinear parabolic equation arising in a model for pressure filtration, submitted for publication in December 2001.Google Scholar
  7. [7]
    Chen G.-Q. and H. Frid,Divergence-measure fields and conservation laws, Arch. Rational Mech. Anal.,147 (1999), 89–118.Google Scholar
  8. [8]
    Chen G.-Q. and H. Frid,Vanishing viscosity limit for initial-boundary value problems for conservation laws, Contemporary Mathematics,238 (1999), 35–51.Google Scholar
  9. [9]
    Chen G.-Q. and H. Frid,Extended divergence-measure fields and the Euler equations for gas dynamics, submitted for publication in September 2001.Google Scholar
  10. [10]
    Chen G.-Q., Frid H. and Y. Li,Uniqueness and stability of Riemann solutions with large oscillation in gas dynamics, Commun. Math. Phys. 2001 (to appear).Google Scholar
  11. [11]
    Chen G.-Q., Levermore C.D. and T.-P. Liu,Hyperbolic conservation laws with stiff relaxation terms and entropy, Comm. Pure Appl. Math.,47 (1994), 787–830.Google Scholar
  12. [12]
    Chen G.-Q. and M. Rascle,Initial layers and uniqueness of weak entropy solutions to hyperbolic conservation laws, Arch. Rational Mech. Anal.,153 (2000), 205–220.Google Scholar
  13. [13]
    Dafermos C.M., Hyperbolic Conservation Laws in Continuum Physics, Springer-Verlag: Berlin, 1999.Google Scholar
  14. [14]
    DiPerna R.,Convergence of the viscosity method for isentropic gas dynamics, Comm. Math. Phys.,91 (1983), 1–30.Google Scholar
  15. [15]
    DiPerna R.,Measure-valued solutions to conservation laws, Arch. Rational Mech. Anal.,88 (1985), 223–270.Google Scholar
  16. [16]
    DiPerna R.,Uniqueness of solutions to hyperbolic conservation laws, Indiana Univ. Math. J.,28 (1979), 137–188.Google Scholar
  17. [17]
    Evans L.C. and R.F. Gariepy, Lecture Notes on Measure Theory and Fine Properties of Functions, CRC Press: Boca Raton, Florida, 1992.Google Scholar
  18. [18]
    Federer H., Geometric Measure Theory, Springer-Verlag: Berlin-Heidelberg-New York, 1969.Google Scholar
  19. [19]
    Friedrichs K.O. and P.D. Lax,Systems of conservation equations with a convex extension, Proc. Nat. Acad. Sci. U.S.A.,68 (1971), 1686–1688.Google Scholar
  20. [20]
    Gagliardo E.,Caratterizioni delle tracce sulla frontiera relativa ad alcune classi di funzioni in n variabli, Rend. Sem. Mat. Univ. Padova,27 (1957), 284–305.Google Scholar
  21. [21]
    Glimm J.,Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math.,18 (1965), 95–105.Google Scholar
  22. [22]
    Glimm J. and P.D. Lax,Decay of Solutions of Systems of Nonlinear Hyperbolic Conservation Laws, Mem. Amer. Math. Soc.,101 (1970), AMS: Providence, R.I.Google Scholar
  23. [23]
    Harrison J. and A. Norton,The Gauss-Green theorem for fractal boundaries. Duke Math. J.,67 (1992), 575–588.Google Scholar
  24. [24]
    Harrison J.,Stokes' theorem for nonsmooth chains, Bull. Amer. Math. Soc. (N.S.),29 (1993), 235–242.Google Scholar
  25. [25]
    Jurkat W.B. and D.J.F. Nonnenmacher,A generalized n-dimensional Riemann integral and the divergence theorem with singularities, Acta Sci. Math. (Szeged),59 (1994), 241–256.Google Scholar
  26. [26]
    Katsoulakis M. and A. Tzavaras,Contractive relaxation systems and the scalar multidimensional conservation law, Comm. Partial Diff. Eqs.,22 (1997), 195–233.Google Scholar
  27. [27]
    Kruzkov S.N.,First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) (Russian),81(123) (1970), 228–255.Google Scholar
  28. [28]
    Lax P.D.,Hyperbolic systems of conservation laws, Comm. Pure Appl. Math.,10 (1957), 537–566.Google Scholar
  29. [29]
    Lax P.D.,Hyperbolic systems of Conservation Laws and the Mathematical Theory of Shock Waves, CBMS.,11 (1973), SIAM, Philadelphia.Google Scholar
  30. [30]
    Lax P.D.,Shock waves and entropy, In: Contributions to Functional Analysis, ed. E.A. Zarantonello, Academic Press, New York, 1971, pp. 603–634.Google Scholar
  31. [31]
    Lions P.L., Perthame B. and E. Tadmor,A kinetic formulation of multidimensional scalar conservation laws and related equations, J. Amer. Math. Soc.,7 (1994), 169–191.Google Scholar
  32. [32]
    Liu T.-P. and J. Smoller,On the vacuum state for the isentropic gas dynamics equations, Adv. Appl. Math.,1 (1980), 345–359.Google Scholar
  33. [33]
    Natalini R.,Convergence to equilibrium for the relaxation approximations of conservation laws, Comm. Pure Appl. Math.,49 (1996), 795–823.Google Scholar
  34. [34]
    Málec J., Nečas J., Rokyta M. and M. Ružička, Weak and Measure-valued Solutions to Evolutionary PDEs. Chapman and Hall: London, 1996.Google Scholar
  35. [35]
    Mascia C., Porretta A. and A. Terracina,Nonhomogeneous Dirichlet problems for degenerate parabolic-hyperbolic equations, Arch. Rational Mech. Anal., (to appear).Google Scholar
  36. [36]
    Nonnenmacher D.J.F.,Sets of finite perimeter and the Gauss-Green theorem with singularities, J. London Math. Soc.,52(2) (1995), 335–344.Google Scholar
  37. [37]
    Otto F.,First order equations with boundary conditions, Preprint no. 234, SFB 256, Univ. Bonn., 1992.Google Scholar
  38. [38]
    Pfeffer W.F.,Derivation and Integration, Cambridge Tracts in Math.,140 (2001), Cambridge Univ. Press: Cambridge.Google Scholar
  39. [39]
    Rodrigues J.-F.,Obstacle Problems in Mathematical Physics, North-Holland Mathematics Studies,134 (1987), Elsevier Science Publishers B.V.Google Scholar
  40. [40]
    Schwartz L., Théorie des Distributions, Actualites Scientifiques et Industrielles,1091, 1122, Herman: Paris, 1950–51.Google Scholar
  41. [41]
    Szepessy A.,An existence result for scalar conservation laws using measure valued solutions, Commun. Partial Diff. Eqs.,14 (1989), 1329–1350.Google Scholar
  42. [42]
    Serre D., Systems of Conservation Laws I, II, Cambridge University Press: Cambridge, 2000.Google Scholar
  43. [43]
    Shapiro V.,The divergence theorem for discontinuous vector fields. Ann. Math.,68(2) (1958), 604–624.Google Scholar
  44. [44]
    Stein E., Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press: Princeton, NJ, 1970.Google Scholar
  45. [45]
    Vasseur A.,Strong traces for solutions to multidimensional scalar conservation laws, Arch. Rational Mech. Anal.160 (2001), 181–193.Google Scholar
  46. [46]
    Volpert A.I.,The space BV and quasilinear equations, Mat. Sb. (N.S.),73 (1967), 255–302, Math. USSR Sbornik,2 (1967), 225–267 (in English).Google Scholar
  47. [47]
    Wagner, D.,Equivalence of the Euler and Lagrange equations of gas dynamics for weak solutions, J. Diff. Eqs.,68 (1987), 118–136.Google Scholar
  48. [48]
    Whitney H., Geometric Integration Theory, Princeton Univ. Press: Princeton, NJ, 1957.Google Scholar
  49. [49]
    Whitney H.,Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc.,36 (1934), 63–89.Google Scholar
  50. [50]
    Ziemer W.P.,Cauchy flux and sets of finite perimeter, Arch. Rational Mech. Anal.,84 (1983), 189–201.Google Scholar
  51. [5]
    Ziemer W.P., Weakly Differentiable Functions: Sobolev Spaces and Functions of Bounded Variation, Springer-Verlag: New York, 1989.Google Scholar

Copyright information

© Sociedade Brasileira de Matemática 2001

Authors and Affiliations

  • Gui-Qiang Chen
    • 1
  • Hermano Frid
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanstonUSA
  2. 2.Instituto de Matemática Pura e Aplicada-IMPARio de JaneiroBrazil

Personalised recommendations